
Late period deadline for HW4 will be 11:59 AM
on Monday so that we can release solutions prior
to the exam.

Extend the exam period to Monday 2 PM -
Wednesday 2PM

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 1

 Prediction at round 𝒕 is:
 Goal: Find tree 𝒇𝒕(⋅) that minimizes:

 The optimal objective is:

▪ 𝐺𝑗 , 𝐻𝑗 depend on the loss function, T= # of leaves.

In principle we could:
 Enumerate possible tree structures 𝑓 and take

the one that minimizes o𝑏𝑗
2/29/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2

 In practice we grow tree greedily:

▪ Start with tree with depth 0

▪ For each leaf node in the tree, try to add a split

▪ The change of the objective after adding a split is:

▪ Take the split that gives best gain

 Next: How to find the best split?

2/22/22 Jure Leskovec , Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3

Score of

left child

Score of

right child

Score if we do not split

 For each node, enumerate over all features

▪ For each feature, sort the instances by feature value

▪ Use a linear scan to decide the best split along that
feature

▪ Take the best split solution along all the features

 Pre-stopping:

▪ Stop split if the best split have negative gain

▪ But maybe a split can benefit future splits.

 Post-Prunning:

▪ Grow a tree to maximum depth, recursively prune
all the leaf splits with negative gain.

2/22/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 4

 Add a new tree 𝒇𝒕(𝒙) in each iteration

▪ Compute necessary statistics for our objective

▪ Greedily grow the tree that minimizes the objective:

 Add 𝒇𝒕(𝒙) to our ensemble model

 Repeat until we user 𝑴 ensemble of trees

2/22/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 5

𝜖 is called step-size or shrinkage,

usually set around 0.1

Goal: prevent overfitting

 XGBoost: eXtreme Gradient Boosting
▪ A highly scalable implementation of gradient boosted

decision trees with regularization

Widely used by data scientists and provides state-of-the-
art results on many problems!

 System optimizations:
▪ Parallel tree constructions using column block

structure
▪ Distributed Computing for training very large models

using a cluster of machines.
▪ Out-of-Core Computing for very large datasets that

don’t fit into memory.

2/22/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 6

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

Charilaos Kanatsoulis, Stanford University

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to
modify them to fit your own needs. If you make use of a significant portion of these slides
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/

 Classic model of algorithms

▪ You get to see the entire input, then compute
some function of it

▪ In this context, “offline algorithm”

 Online Algorithms

▪ You get to see the input one piece at a time, and
need to make irrevocable decisions along the way

▪ Similar to the data stream model

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 9

 Query-to-advertiser graph:

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

advertiser

q
u

e
ry

[Andersen, Lang: Communities from seed sets, 2006]

103/7/2024

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

1

2

3

4

a

b

c

d

(1,a)

(2,b)

(3,d)

Advertiser
Opportunity to

show an ad
Which advertiser

gets picked

Advertiser X wants

to show an ad for

topic/query Y

This is an online problem: We have to make decisions
as queries/topics show up. We do not know what

topics will show up in the future.
113/7/2024

1

2

3

4

a

b

c

dBoys Girls

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Nodes: Boys and Girls; Links: Preferences
Goal: Match boys to girls so that the most

preferences are satisfied
Note: edgesare only

preferenceswith no
weight or order.

133/7/2024

M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching = |M| = 3

1

2

3

4

a

b

c

dBoys Girls

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Matching means that we are not using any vertex twice
143/7/2024

1

2

3

4

a

b

c

dBoys Girls

M = {(1,c),(2,b),(3,d),(4,a)} is a
perfect matching

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Perfect matching … all vertices of the graph are matched

Maximum matching … matching that contains the largest possible number of matches
153/7/2024

 Problem: Find a maximum matching for a
given bipartite graph

▪ A perfect one if it exists

 There is a polynomial-time offline algorithm
based on augmenting paths (Hopcroft & Karp 1973,
see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

 But what if we do not know the entire
graph upfront?

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 163/7/2024

http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm

 Initially, we are given the set boys
 In each round, one girl’s choices are revealed

▪ That is, the girl’s edges are revealed

 At that time, we have to decide to either:

▪ Pair the girl with a boy

▪ Do not pair the girl with any boy

 Example of application:
 Assigning tasks to servers

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 17

Note: Matching means that we are not using any girl or boy twice

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

1

2

3

4

a

b

c

d

(1,a)

(2,b)

(3,d)

183/7/2024

 Greedy algorithm for the online graph
matching problem:

▪ Pair the new girl with any eligible boy

▪ If there is none, do not pair the girl

 How good is the algorithm?

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 19

 For input I, suppose greedy produces
matching Mgreedy while an optimal
matching is Mopt

Competitive ratio =
 minall possible inputs I (|Mgreedy|/|Mopt|)

(what is greedy’s worst performance over all possible inputs I)

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 20

 Consider a case: Mgreedy≠ Mopt

 Consider the set G of girls
matched in Mopt but not in Mgreedy

 (1) By definition of G:
|Mopt| |Mgreedy| + |G|

 (2) Define set B of boys linked to girls in G
▪ Notice boys in B are already matched in Mgreedy. Why?

▪ If there would exist such non-matched (by Mgreedy) boy
adjacent to a non-matched girl then greedy would have
matched them

 So: |Mgreedy|≥ |B|
Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

a

b

c

d

G={ }B={ }

Mopt1

2

3

4

Edge color indicates matching in

Mopt (blue) vs. Mgreedy(red).

213/7/2024

 Summary so far:

▪ Girls G matched in Mopt but not in Mgreedy

▪ Boys B adjacent to girls in G

▪ (1) |Mopt| |Mgreedy| + |G|

▪ (2) |Mgreedy|≥ |B|

 Optimal matches all girls in G to (some) boys in B

▪ (3) |G| |B|

 Combining (2) and (3):

▪ (4) |G| |B| |Mgreedy|

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

a

b

c

d

G={ }B={ }

Mopt1

2

3

4

Edge color indicates matching in

Mopt (blue) vs. Mgreedy(red).

223/7/2024

 So we have:

▪ (1) |Mopt| |Mgreedy| + |G|

▪ (4) |G| |B| |Mgreedy|

 Combining (1) and (4):

▪ Worst case is when |G| = |B| = |Mgreedy|

▪ |Mopt| |Mgreedy| + |Mgreedy|

▪ Then |Mgreedy|/|Mopt| 1/2

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

a

b

c

d

G={ }B={ }

Mopt1

2

3

4

Edge color indicates matching in

Mopt (blue) vs. Mgreedy(red).

233/7/2024

1

2

3

4

a

b

c

(1,a)

(2,b)

d

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 263/7/2024

 Banner ads (1995-2001)

▪ Initial form of web advertising

▪ Popular websites charged
$X for every 1,000
“impressions” of the ad

▪ Called “CPM” rate
(Cost per thousand impressions)

▪ Modeled similar to TV, magazine ads

▪ From untargeted to demographically targeted

▪ Low click-through rates

▪ Low ROI for advertisers

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

CPM…cost per mille

Mille…thousand in Latin

283/7/2024

 Introduced by Overture around 2000

▪ Advertisers bid on search keywords

▪ When someone searches for that keyword, the
highest bidder’s ad is shown

▪ Advertiser is charged only if the ad is clicked on

 Similar model adopted by Google with some
changes around 2002

▪ Called Adwords

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 29

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 303/7/2024

 Performance-based advertising works!

▪ Multi-billion-dollar industry

 Interesting problem:
Which ads to show for a given query?

▪ (Today’s lecture)

 If I am an advertiser, which search terms
should I bid on and how much should I bid?

▪ (Not focus of today’s lecture)

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 31

 A stream of queries arrives at the search
engine: q1, q2, …

 Several advertisers bid on each query
 When query qi arrives, search engine must

pick a subset of advertisers to show their ads

 Goal: Maximize search engine’s revenues

▪ Simple solution: Instead of raw bids, use the
“expected revenue per click” (i.e., Bid*CTR)

 Clearly we need an online algorithm!

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 32

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Advertiser Bid CTR Bid * CTR

A

B

C

$1.00

$0.75

$0.50

1%

2%

2.5%

1 cent

1.5 cents

1.25 cents

Click through

rate

Expected

revenue

333/7/2024

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Advertiser Bid CTR Bid * CTR

A

B

C

$1.00

$0.75

$0.50

1%

2%

2.5%

1 cent

1.5 cents

1.25 cents

Instead of sorting advertisers by bid, sort by expected revenue

343/7/2024

Challenges:
 CTR of an ad is unknown
 Advertisers have limited budgets and bid on

multiple queries
Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Advertiser Bid CTR Bid * CTR

A

B

C

$1.00

$0.75

$0.50

1%

2%

2.5%

1 cent

1.5 cents

1.25 cents

Instead of sorting advertisers by bid, sort by expected revenue

353/7/2024

 Two complications:

▪ Budget

▪ CTR of an ad is unknown

1) Budget: Each advertiser has a limited budget

▪ Search engine guarantees that the advertiser
will not be charged more than their daily budget

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 363/7/2024

 2) CTR (Click-Through Rate): Each ad-query
pair has a different likelihood of being clicked
▪ Advertiser 1 bids $2 on query A,

click probability = 0.1

▪ Advertiser 2 bids $1 on query B,
click probability = 0.5

 CTR is predicted or measured historically
▪ Averaged over a time period

 Some complications we will not cover:
▪ 1) CTR is position dependent:

▪ Ad #1 is clicked more than Ad #2

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 373/7/2024

 Some complications we will cover:

▪ 2) Exploration vs. exploitation
Exploit: Should we keep showing an ad for which
we have good estimates of click-through rate?
or
Explore: Shall we show a brand new ad to get a
better sense of its click-through rate?

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 383/7/2024

 Given:
▪ 1. A set of bids by advertisers for search queries

▪ 2. A click-through rate for each advertiser-query pair

▪ 3. A budget for each advertiser (say for 1 month)

▪ 4. A limit on the number of ads to be displayed with
each search query

 Respond to each search query with a set of
advertisers such that:
▪ 1. The size of the set is no larger than the limit on the

number of ads per query

▪ 2. Each advertiser has bid on the search query

▪ 3. Each advertiser has enough budget left to pay for
the ad if it is clicked upon

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 403/7/2024

 Our setting: Simplified environment

▪ There is 1 ad shown for each query

▪ All advertisers have the same budget B

▪ All ads are equally likely to be clicked

▪ Bid value of each ad is the same (=$1)

 Simplest algorithm is greedy:

▪ For a query pick any advertiser who has
bid 1 for that query

▪ Competitive ratio of greedy is 1/2

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 41

 Two advertisers A and B

▪ A bids on query x, B bids on x and y

▪ Both have budgets of $4

 Query stream: x x x x y y y y

▪ Worst case greedy choice: B B B B _ _ _ _

▪ Optimal: A A A A B B B B

▪ Competitive ratio = ½

 This is the worst case!
▪ Note: Greedy algorithm is deterministic – it always

resolves draws in the same way

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 42

 BALANCE Algorithm by Mehta, Saberi,
Vazirani, and Vazirani

▪ For each query, pick the advertiser with the
largest unspent budget

▪ Break ties arbitrarily (but in a deterministic way)

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 43

 Two advertisers A and B

▪ A bids on query x, B bids on x and y

▪ Both have budgets of $4

 Query stream: x x x x y y y y

 BALANCE choice: A B A B B B _ _

▪ Optimal: A A A A B B B B

 In general: For BALANCE on 2 advertisers
Competitive ratio = ¾

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 44

 Consider simple case (w.l.o.g.):
▪ 2 advertisers, A1 and A2, each with budget B (1)
▪ Optimal solution exhausts both advertisers’ budgets

 BALANCE must exhaust at least one budget:
▪ If not, we can allocate more queries

▪ Whenever BALANCE makes a mistake (both advertisers bid
on the query), advertiser’s unspent budget only decreases

▪ Since optimal exhausts both budgets, one will for sure get
exhausted

▪ Assume BALANCE exhausts A2’s budget,
but allocates x queries fewer than the optimal
▪ So revenue of BALANCE = 2B – x (where OPT is 2B)

▪ Let’s work out what x is!
Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 453/7/2024

A1 A2

B

Opt revenue = 2B

Balance revenue = 2B-x = B+y

We claim y > x (next slide).
Balance revenue is minimum for x=y=B/2.
Minimum Balance revenue = 3B/2.
Competitive Ratio = 3/4.

Queries allocated to A1 in optimal solution

Queries allocated to A2 in optimal solution

xy

B

A1 A2

x

Not used

Balance allocation

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 463/7/2024

A1 A2

B

xy

B

A1 A2

x

Optimal revenue = 2B

Assume Balance gives revenue = 2B-x = B+y

Assume we exhausted A2’s budget

Notice: Unassigned queries should be assigned

to A2 (since if we could assign to A1 we would since we still have

the budget)

Goal: Show we have y B/2

 Case 1) BALANCE assigns ≥B/2 blue queries to

A1.

Then trivially, 𝒚 ≥ 𝑩/𝟐

Queries allocated to A1 in the optimal solution

Queries allocated to A2 in the optimal solution

Not

used

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 473/7/2024

A1 A2

B

Optimal revenue = 2B

Assume Balance gives revenue = 2B-x = B+y

Assume we exhausted A2’s budget

Unassigned queries should be assigned to A2

(if we could assign to A1 we would since we still have the budget)

Goal: Show we have y B/2

Queries allocated to A1 in the optimal solution

Queries allocated to A2 in the optimal solution

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

xy

B

A1 A2

x

Not

used

Case 2) BALANCE assigns >B/2 blue queries to A2.

Consider the last blue query assigned to A2.

At that time, A2’s unspent budget must have been at least as big as A1’s.

That means at least as many queries have been assigned to A1 as to A2.

At this point, we have already assigned at least B/2 queries to A2.
So, 𝒙 ≤ 𝑩/𝟐 and 𝒙 + 𝒚 = 𝑩 then 𝒚 > 𝑩/𝟐

Balance revenue is minimum for 𝒙 = 𝒚 = 𝑩/𝟐
Minimum Balance revenue = 𝟑𝑩/𝟐
Competitive Ratio: BAL/OPT = 3/4

483/7/2024

 In the general case, worst competitive ratio
of BALANCE is 1–1/e = approx. 0.63

▪ e = 2.7182

▪ Interestingly, no online algorithm has a better
competitive ratio!

 Let’s see the worst case example that gives
this ratio

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 49

 N advertisers: A1, A2, … AN

▪ Each with budget B > N
 Queries:

▪ N∙B queries appear in N rounds of B queries each
 Bidding:

▪ Round 1 queries: bidders A1, A2, …, AN

▪ Round 2 queries: bidders A2, A3, …, AN

▪ Round i queries: bidders Ai, …, AN

 Optimum allocation:
Allocate all round i queries to Ai

▪ Optimum revenue N∙B

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 503/7/2024

…

A1 A2 A3
AN-1 AN

B/N

B/(N-1)

B/(N-2)

BALANCE assigns each of the queries in round 1 to N advertisers.
After k rounds, sum of allocations 𝑺𝒌 to each of advertisers

Ak,…,AN is 𝑺𝒌 = 𝑺𝒌+𝟏 = ⋯ = 𝑺𝑵 = σ𝒊=𝟏
𝒌 𝑩

𝑵−(𝒊−𝟏)

If we find the smallest k such that Sk B, then after k rounds
we cannot allocate any queries to any advertiser

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

A
d

ve
rt

is
e
r’

s
 b

u
d

g
e
t : Budget

spent in rounds

1,2, 3, …

513/7/2024

B/1 B/2 B/3 … B/(N-(k-1)) … B/(N-1) B/N

S1

S2

Sk = B

1/1 1/2 1/3 … 1/(N-(k-1)) … 1/(N-1) 1/N

S1

S2

Sk = 1

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 52

Can divide everything by B:

3/7/2024

 Fact: 𝑯𝒏 = σ𝒊=𝟏
𝒏 𝟏/𝒊 ≈ 𝐥𝐧 𝒏 for large n

▪ Result due to Euler

𝑺𝒌 = 𝟏 implies: 𝑯𝑵−𝒌 = 𝒍𝒏(𝑵) − 𝟏 = 𝒍𝒏(
𝑵

𝒆
)

 We also know: 𝑯𝑵−𝒌 = 𝒍𝒏(𝑵 − 𝒌)

 So: 𝑵 − 𝒌 =
𝑵

𝒆

 Then: 𝒌 = 𝑵(𝟏 −
𝟏

𝒆
)

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

1/1 1/2 1/3 … 1/(N-(k-1)) … 1/(N-1) 1/N

Sk = 1

ln(N)

ln(N)-1

N terms sum to ln(N).

Last k terms sum to 1.

First N-k terms sum

to ln(N-k) but also to ln(N)-1

533/7/2024

 So after the first k=N(1-1/e) rounds, we
cannot allocate a query to any advertiser

 Revenue = B∙N (1-1/e)

 Competitive ratio = 1-1/e

 Note: So far we assumed:

▪ All advertisers have the same budget B

▪ All advertisers bid 1 for the ad

▪ (but each advertiser can bid on any subset of ads)
3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 54

 Arbitrary bids and arbitrary budgets!
 Consider we have 1 query q, advertiser i

▪ Bid = xi

▪ Budget = bi

 In a general setting BALANCE can be terrible
▪ Consider two advertisers A1 and A2

▪ A1: x1 = 1, b1 = 110

▪ A2: x2 = 10, b2 = 100

▪ Consider we see 10 instances of q

▪ BALANCE always selects A1 and earns 10

▪ Optimal earns 100

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 553/7/2024

 Arbitrary bids: consider query q, bidder i
▪ Bid = xi

▪ Budget = bi

▪ Amount spent so far = mi

▪ Fraction of budget left over fi = 1-mi/bi

▪ Define i(q) = xi(1-e-fi)

 Allocate query q to bidder i with largest
value of i(q)

 Same competitive ratio (1-1/e) = 0.63

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 563/7/2024

	Slide 1: Announcements
	Slide 2: Gradient Boosted Decision Trees
	Slide 3: How to find a single tree f t
	Slide 4: How to Find the Best Split?
	Slide 5: Summary: GBDT Algorithm
	Slide 6: XGBoost
	Slide 7: Advertising on the Web
	Slide 9: Online Algorithms
	Slide 10: Sponsored Search: Ads
	Slide 11: Graph Matching for Advertising
	Slide 12: Online Bipartite Matching
	Slide 13: Example: Bipartite Matching
	Slide 14: Example: Bipartite Matching
	Slide 15: Example: Bipartite Matching
	Slide 16: Matching Algorithm
	Slide 17: Online Graph Matching Problem
	Slide 18: Online Graph Matching: Example
	Slide 19: Greedy Algorithm
	Slide 20: Competitive Ratio
	Slide 21: Analyzing the Greedy Algorithm
	Slide 22: Analyzing the Greedy Algorithm
	Slide 23: Analyzing the Greedy Algorithm
	Slide 26: Worst-case Scenario
	Slide 27: Web Advertising
	Slide 28: History of Web Advertising
	Slide 29: Performance-based Advertising
	Slide 30: Ads vs. Search Results
	Slide 31: Web 2.0
	Slide 32: AdWords Problem
	Slide 33: The Adwords Innovation
	Slide 34: The Adwords Innovation
	Slide 35: Limitations of Simple Algorithm
	Slide 36: Complications: Budget
	Slide 37: Complications: CTR
	Slide 38: Complications: CTR
	Slide 39: Online Algorithms The BALANCE Algorithm
	Slide 40: Adwords Problem
	Slide 41: Greedy Algorithm
	Slide 42: Bad Scenario for Greedy
	Slide 43: BALANCE Algorithm [MSVV]
	Slide 44: Example: BALANCE
	Slide 45: Analyzing BALANCE
	Slide 46: Analyzing Balance
	Slide 47: Analyzing BALANCE: What’s x?
	Slide 48: Analyzing BALANCE: What’s x?
	Slide 49: BALANCE: General Result
	Slide 50: Worst case for BALANCE
	Slide 51: BALANCE Allocation
	Slide 52: BALANCE: Analysis
	Slide 53: BALANCE: Analysis
	Slide 54: BALANCE: Analysis
	Slide 55: General Version of the Problem
	Slide 56: Generalized BALANCE

