
Late period deadline for HW4 will be 11:59 AM 
on Monday so that we can release solutions prior 
to the exam.

Extend the exam period to Monday 2 PM -
Wednesday 2PM
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 Prediction at round 𝒕 is:
 Goal: Find tree 𝒇𝒕(⋅) that minimizes:

 The optimal objective is:

▪ 𝐺𝑗 , 𝐻𝑗  depend on the loss function, T= # of leaves.

In principle we could:
 Enumerate possible tree structures 𝑓 and take 

the one that minimizes o𝑏𝑗
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 In practice we grow tree greedily:

▪ Start with tree with depth 0

▪ For each leaf node in the tree, try to add a split

▪ The change of the objective after adding a split is:

▪ Take the split that gives best gain

 Next: How to find the best split?
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Score of 

left child

Score of 

right child

Score if we do not split



 For each node, enumerate over all features

▪ For each feature, sort the instances by feature value

▪ Use a linear scan to decide the best split along that 
feature

▪ Take the best split solution along all the features

 Pre-stopping:

▪ Stop split if the best split have negative gain

▪ But maybe a split can benefit future splits.

 Post-Prunning: 

▪ Grow a tree to maximum depth, recursively prune 
all the leaf splits with negative gain.
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 Add a new tree 𝒇𝒕(𝒙) in each iteration

▪ Compute necessary statistics for our objective

▪ Greedily grow the tree that minimizes the objective:

 Add 𝒇𝒕(𝒙) to our ensemble model

 Repeat until we user 𝑴 ensemble of trees
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𝜖 is called step-size or shrinkage, 

usually set around 0.1

Goal: prevent overfitting



 XGBoost: eXtreme Gradient Boosting
▪ A highly scalable implementation of gradient boosted 

decision trees with regularization

Widely used by data scientists and provides state-of-the-
art results on many problems!

 System optimizations:
▪ Parallel tree constructions using column block 

structure
▪ Distributed Computing for training very large models 

using a cluster of machines.
▪ Out-of-Core Computing for very large datasets that 

don’t fit into memory.
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 Classic model of algorithms

▪ You get to see the entire input, then compute 
some function of it

▪ In this context, “offline algorithm”

 Online Algorithms

▪ You get to see the input one piece at a time, and 
need to make irrevocable decisions along the way

▪ Similar to the data stream model
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 Query-to-advertiser graph:
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[Andersen, Lang: Communities from seed sets, 2006]
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Advertiser
Opportunity to

show an ad
Which advertiser 

gets picked

Advertiser X wants

to show an ad for 

topic/query Y

This is an online problem: We have to make decisions 
as queries/topics show up. We do not know what 

topics will show up in the future.
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Nodes: Boys and Girls; Links: Preferences
Goal: Match boys to girls so that the most 

preferences are satisfied
Note: edgesare only

preferenceswith no
weight or order.
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M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching = |M| = 3
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Matching means that we are not using any vertex twice
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M = {(1,c),(2,b),(3,d),(4,a)} is a 
perfect matching

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Perfect matching … all vertices of the graph are matched

Maximum matching … matching that contains the largest possible number of matches
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 Problem: Find a maximum matching for a 
given bipartite graph

▪ A perfect one if it exists

 There is a polynomial-time offline algorithm 
based on augmenting paths (Hopcroft & Karp 1973, 
see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

 But what if we do not know the entire 
graph upfront?
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 Initially, we are given the set boys
 In each round, one girl’s choices are revealed

▪ That is, the girl’s edges are revealed

 At that time, we have to decide to either:

▪ Pair the girl with a boy

▪ Do not pair the girl with any boy

 Example of application: 
 Assigning tasks to servers
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Note: Matching means that we are not using any girl or boy twice
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 Greedy algorithm for the online graph 
matching problem:

▪ Pair the new girl with any eligible boy

▪ If there is none, do not pair the girl

 How good is the algorithm?
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 For input I, suppose greedy produces 
matching Mgreedy while an optimal 
matching is Mopt

Competitive ratio = 
   minall possible inputs I (|Mgreedy|/|Mopt|)

(what is greedy’s worst performance over all possible inputs I)
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 Consider a case: Mgreedy≠ Mopt

 Consider the set G of girls 
matched in Mopt but not in Mgreedy

 (1) By definition of G: 
|Mopt|  |Mgreedy| + |G|

 (2) Define set B of boys linked to girls in G 
▪ Notice boys in B are already matched in Mgreedy. Why?

▪ If there would exist such non-matched (by Mgreedy) boy 
adjacent to a non-matched girl then greedy would have 
matched them

    So: |Mgreedy|≥ |B|
Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

a

b

c

d

G={     }B={          }

Mopt1

2

3

4

Edge color indicates matching in 

Mopt (blue) vs. Mgreedy(red).

213/7/2024



 Summary so far:

▪ Girls G matched in Mopt but not in Mgreedy

▪ Boys B adjacent to girls in G

▪ (1) |Mopt|  |Mgreedy| + |G|

▪ (2) |Mgreedy|≥ |B|

 Optimal matches all girls in G to (some) boys in B

▪ (3) |G|  |B|

 Combining (2) and (3):

▪ (4) |G|  |B|  |Mgreedy|
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 So we have:

▪ (1) |Mopt|  |Mgreedy| + |G|

▪ (4) |G|  |B|  |Mgreedy|

 Combining (1) and (4):

▪ Worst case is when |G| = |B| = |Mgreedy|

▪ |Mopt|  |Mgreedy| + |Mgreedy| 

▪ Then |Mgreedy|/|Mopt|  1/2
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 Banner ads (1995-2001)

▪ Initial form of web advertising

▪ Popular websites charged 
$X for every 1,000 
“impressions” of the ad

▪ Called “CPM” rate 
(Cost per thousand impressions)

▪ Modeled similar to TV, magazine ads

▪ From untargeted to demographically targeted

▪ Low click-through rates

▪ Low ROI for advertisers
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CPM…cost per mille

Mille…thousand in Latin
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 Introduced by Overture around 2000

▪ Advertisers bid on search keywords

▪ When someone searches for that keyword, the 
highest bidder’s ad is shown

▪ Advertiser is charged only if the ad is clicked on

 Similar model adopted by Google with some 
changes around 2002

▪ Called Adwords
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 Performance-based advertising works!

▪ Multi-billion-dollar industry

 Interesting problem: 
Which ads to show for a given query? 

▪ (Today’s lecture)

 If I am an advertiser, which search terms 
should I bid on and how much should I bid? 

▪ (Not focus of today’s lecture)
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 A stream of queries arrives at the search 
engine: q1, q2, …

 Several advertisers bid on each query
 When query qi arrives, search engine must 

pick a subset of advertisers to show their ads

 Goal: Maximize search engine’s revenues

▪ Simple solution: Instead of raw bids, use the 
“expected revenue per click” (i.e., Bid*CTR)

 Clearly we need an online algorithm!
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Challenges:
 CTR of an ad is unknown
 Advertisers have limited budgets and bid on 

multiple queries
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 Two complications:

▪ Budget

▪ CTR of an ad is unknown

1) Budget: Each advertiser has a limited budget

▪ Search engine guarantees that the advertiser 
will not be charged more than their daily budget
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 2) CTR (Click-Through Rate): Each ad-query 
pair has a different likelihood of being clicked
▪ Advertiser 1 bids $2 on query A, 

click probability = 0.1

▪ Advertiser 2 bids $1 on query B, 
click probability = 0.5

 CTR is predicted or measured historically
▪ Averaged over a time period

 Some complications we will not cover:
▪ 1) CTR is position dependent:

▪ Ad #1 is clicked more than Ad #2
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 Some complications we will cover:

▪ 2) Exploration vs. exploitation
Exploit: Should we keep showing an ad for which 
we have good estimates of click-through rate?
or 
Explore:  Shall we show a brand new ad to get a 
better sense of its click-through rate?
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 Given:
▪ 1. A set of bids by advertisers for search queries

▪ 2. A click-through rate for each advertiser-query pair

▪ 3. A budget for each advertiser (say for 1 month)

▪ 4. A limit on the number of ads to be displayed with 
each search query

 Respond to each search query with a set of 
advertisers such that:
▪ 1. The size of the set is no larger than the limit on the 

number of ads per query

▪ 2. Each advertiser has bid on the search query

▪ 3. Each advertiser has enough budget left to pay for 
the ad if it is clicked upon
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 Our setting: Simplified environment

▪ There is 1 ad shown for each query

▪ All advertisers have the same budget B

▪ All ads are equally likely to be clicked

▪ Bid value of each ad is the same (=$1)

 Simplest algorithm is greedy:

▪ For a query pick any advertiser who has 
bid 1 for that query

▪ Competitive ratio of greedy is 1/2
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 Two advertisers A and B

▪ A bids on query x, B bids on x and y

▪ Both have budgets of $4

 Query stream: x x x x y y y y 

▪ Worst case greedy choice: B B B B _ _ _ _ 

▪ Optimal:  A A A A B B B B 

▪ Competitive ratio = ½

 This is the worst case!
▪ Note: Greedy algorithm is deterministic – it always 

resolves draws in the same way
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 BALANCE Algorithm by Mehta, Saberi, 
Vazirani, and Vazirani

▪ For each query, pick the advertiser with the 
largest unspent budget

▪ Break ties arbitrarily (but in a deterministic way)
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 Two advertisers A and B

▪ A bids on query x, B bids on x and y

▪ Both have budgets of $4

 Query stream: x x x x y y y y 

 BALANCE choice: A B A B B B _ _ 

▪ Optimal: A A A A B B B B

 In general: For BALANCE on 2 advertisers 
Competitive ratio = ¾
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 Consider simple case (w.l.o.g.): 
▪ 2 advertisers, A1 and A2, each with budget B (1)
▪ Optimal solution exhausts both advertisers’ budgets

 BALANCE must exhaust at least one budget:
▪ If not, we can allocate more queries

▪ Whenever BALANCE makes a mistake (both advertisers bid 
on the query), advertiser’s unspent budget only decreases

▪ Since optimal exhausts both budgets, one will for sure get 
exhausted

▪ Assume BALANCE exhausts A2’s budget, 
but allocates x queries fewer than the optimal
▪ So revenue of BALANCE = 2B – x (where OPT is 2B)

▪ Let’s work out what x is!
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A1 A2

B

Opt revenue = 2B

Balance revenue = 2B-x = B+y

We claim y > x (next slide).
Balance revenue is minimum for x=y=B/2.
Minimum Balance revenue = 3B/2.
Competitive Ratio = 3/4.

Queries allocated to A1 in optimal solution

Queries allocated to A2 in optimal solution

xy

B

A1 A2

x

Not used

Balance allocation
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A1 A2

B

xy

B

A1 A2

x

Optimal revenue = 2B

Assume Balance gives revenue = 2B-x = B+y

Assume we exhausted A2’s budget

Notice: Unassigned queries should be assigned 

to A2 (since if we could assign to A1 we would since we still have 

the budget)

Goal: Show we have y  B/2

  Case 1) BALANCE assigns ≥B/2 blue queries to 

A1.

Then trivially, 𝒚 ≥  𝑩/𝟐

Queries allocated to A1 in the optimal solution

Queries allocated to A2 in the optimal solution

Not 

used
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A1 A2

B

Optimal revenue = 2B

Assume Balance gives revenue = 2B-x = B+y

Assume we exhausted A2’s budget

Unassigned queries should be assigned to A2

(if we could assign to A1 we would since we still have the budget)

Goal: Show we have y  B/2

Queries allocated to A1 in the optimal solution

Queries allocated to A2 in the optimal solution
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xy

B

A1 A2

x

Not 

used

Case 2) BALANCE assigns >B/2 blue queries to A2.

Consider the last blue query assigned to A2.

At that time, A2’s unspent budget must have been at least as big as A1’s.

That means at least as many queries have been assigned to A1 as to A2.

At this point, we have already assigned at least B/2 queries to A2.
So, 𝒙 ≤ 𝑩/𝟐 and 𝒙 + 𝒚 = 𝑩 then 𝒚 > 𝑩/𝟐

Balance revenue is minimum for 𝒙 = 𝒚 = 𝑩/𝟐
Minimum Balance revenue = 𝟑𝑩/𝟐
Competitive Ratio: BAL/OPT = 3/4
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 In the general case, worst competitive ratio 
of BALANCE is 1–1/e = approx. 0.63

▪ e = 2.7182

▪ Interestingly, no online algorithm has a better 
competitive ratio!

 Let’s see the worst case example that gives 
this ratio
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 N advertisers: A1, A2, … AN

▪ Each with budget B > N
 Queries:

▪ N∙B queries appear in N rounds of B queries each
 Bidding:

▪ Round 1 queries: bidders A1, A2,       …, AN

▪ Round 2 queries: bidders       A2, A3, …, AN

▪ Round i queries:  bidders             Ai, …,  AN

 Optimum allocation: 
Allocate all round i queries to Ai

▪ Optimum revenue N∙B
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…

A1 A2 A3
AN-1 AN

B/N

B/(N-1)

B/(N-2)

BALANCE assigns each of the queries in round 1 to N advertisers. 
After k rounds, sum of allocations 𝑺𝒌 to each of advertisers 

Ak,…,AN is 𝑺𝒌 =  𝑺𝒌+𝟏 = ⋯ = 𝑺𝑵 = σ𝒊=𝟏
𝒌 𝑩

𝑵−(𝒊−𝟏)

If we find the smallest k such that Sk  B, then after k rounds
we cannot allocate any queries to any advertiser
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B/1   B/2   B/3  …  B/(N-(k-1)) … B/(N-1)   B/N

S1

S2

Sk = B 

1/1   1/2   1/3  …  1/(N-(k-1)) … 1/(N-1)   1/N

S1

S2

Sk = 1 
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Can divide everything by B:
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 Fact: 𝑯𝒏 = σ𝒊=𝟏
𝒏 𝟏/𝒊 ≈ 𝐥𝐧 𝒏  for large n

▪ Result due to Euler

𝑺𝒌 = 𝟏 implies: 𝑯𝑵−𝒌 = 𝒍𝒏(𝑵) − 𝟏 = 𝒍𝒏(
𝑵

𝒆
)

 We also know: 𝑯𝑵−𝒌 = 𝒍𝒏(𝑵 − 𝒌)

 So: 𝑵 − 𝒌 =
𝑵

𝒆

 Then: 𝒌 = 𝑵(𝟏 −
𝟏

𝒆
)
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1/1   1/2   1/3  …  1/(N-(k-1)) … 1/(N-1)   1/N

Sk = 1 

ln(N)

ln(N)-1

N terms sum to ln(N).

Last k terms sum to 1.

First N-k terms sum

to ln(N-k) but also to ln(N)-1
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 So after the first k=N(1-1/e) rounds, we 
cannot allocate a query to any advertiser

 Revenue = B∙N (1-1/e)

 Competitive ratio = 1-1/e

 Note: So far we assumed:

▪ All advertisers have the same budget B

▪ All advertisers bid 1 for the ad

▪ (but each advertiser can bid on any subset of ads)
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 Arbitrary bids and arbitrary budgets!
 Consider we have 1 query q, advertiser i

▪ Bid = xi

▪ Budget = bi

 In a general setting BALANCE can be terrible
▪ Consider two advertisers A1 and A2 

▪ A1: x1 = 1, b1 = 110

▪ A2: x2 = 10, b2 = 100

▪ Consider we see 10 instances of q

▪ BALANCE always selects A1 and earns 10

▪ Optimal earns 100
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 Arbitrary bids: consider query q, bidder i
▪ Bid = xi

▪ Budget = bi

▪ Amount spent so far = mi

▪ Fraction of budget left over fi = 1-mi/bi

▪ Define  i(q) = xi(1-e-fi)

 Allocate query q to bidder i with largest 
value of  i(q)

 Same competitive ratio (1-1/e) = 0.63
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