# Announcement: Final Exam Logistics

### **Final: Logistics**

#### Date:

- Monday, March 11 2:00 PM –
   Wednesday, March 13, 2:00 PM Pacific Time
- Logistics:
  - Administered on Gradescope
  - 3 hours long (timer starts once you open the exam)
  - Submitting answers (all questions visible at the same time):
    - One PDF for the entire exam (uploaded at the top of the exam)
    - One PDF for each question (uploaded to each question)
      - You can do this as you go through the questions (do not need to wait until the end)
    - Write answers directly in text boxes
  - Please budget your time for submission (~10 min) and solve questions you find easy first – the exam tends to be on the longer side

### **Final: Logistics**

- If you think a question isn't clear on the exam...
  - Ask on Ed or state your (reasonable and valid) assumptions in your answer
  - We will actively monitor Ed on...
    - Monday: 2 PM 10 PM PT
    - Tuesday: 8 AM 3 PM, 5 PM 10 PM PT
    - Wednesday: 8 AM 2 PM PT
    - We will answer clarifying questions only

#### Exam Review Session: Friday, 6 PM – 7 PM PT via Zoom (see Ed, Canvas for details)

#### **Final: Instructions**

- Final exam is open book and open notes
  A calculator or computer is REQUIRED
  - You may only use your computer to do arithmetic calculations (i.e., the buttons found on a standard scientific calculator)
  - You may also use your computer to read course notes or the textbook
  - No use of AI chatbots (including, but not limited to, ChatGPT)
  - No collaboration with other students
- Practice finals are posted on Ed, Gradescope

## **Good luck with the exam!** ③

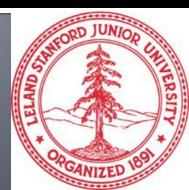
- You Have Done a Lot!!!
- And (hopefully) learned a lot!!!
  - Answered questions and proved many interesting results
  - Implemented a number of methods

### Thank You for the Hard Work!

Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://www.mmds.org</u>

# **Optimizing Submodular Functions**

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu



#### **Recommendations: Diversity**

Redundancy leads to a bad user experience

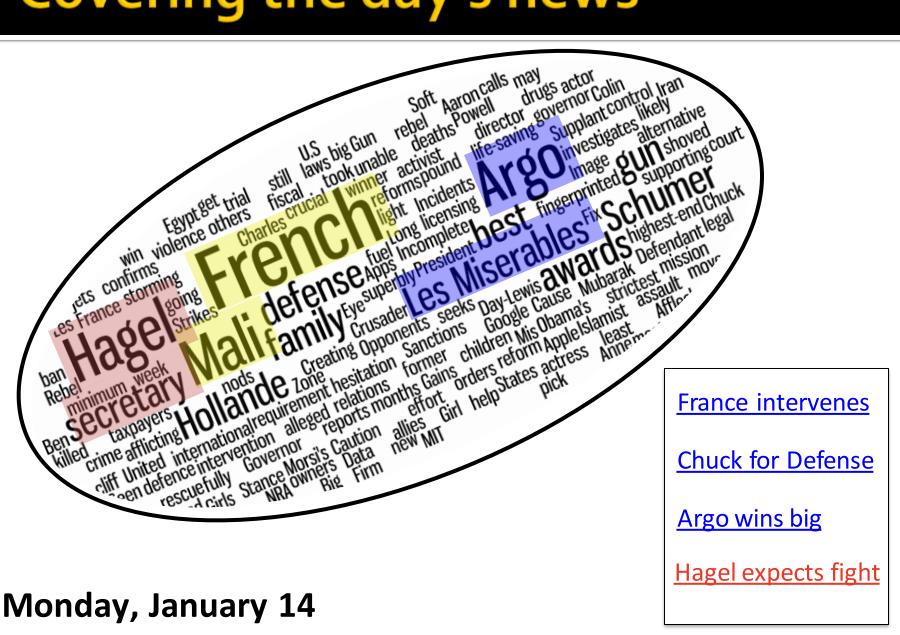
**Obama Calls for Broad Action on Guns** 

Obama unveils 23 executive actions, calls for assault weapons ban

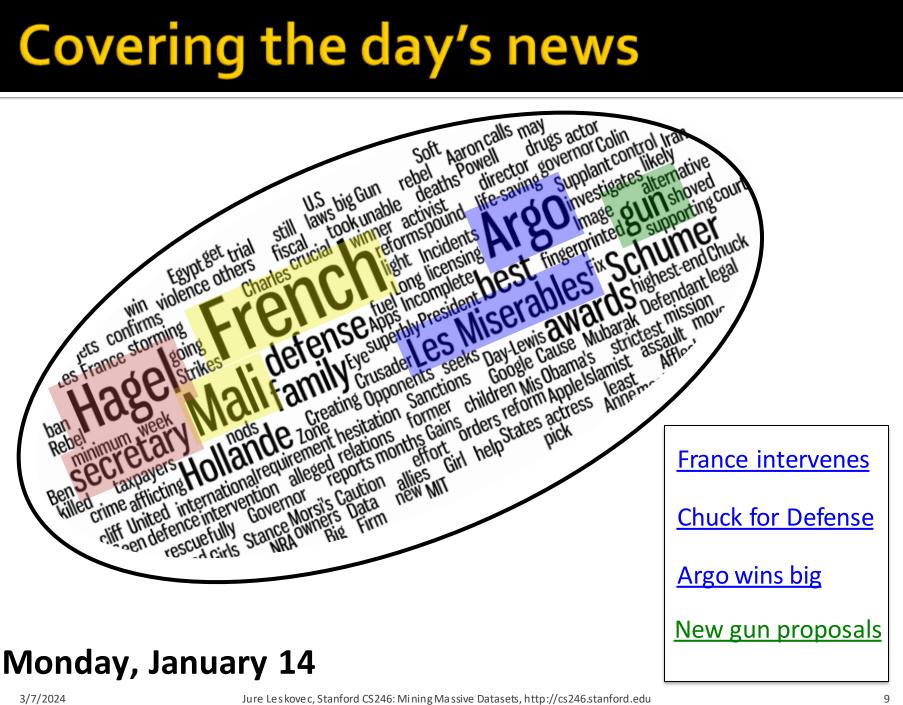
Obama seeks assault weapons ban, background checks on all gun sales

Uncertainty around information need => don't put all eggs in one basket
 How do we optimize for diversity directly?

#### Covering the day's news



#### Covering the day's news



3/7/2024

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

### **Encode Diversity as Coverage**

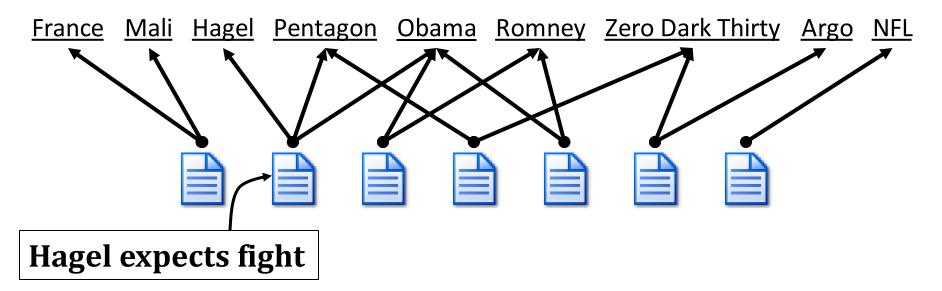
- Idea: Encode diversity as coverage problem
  Example: Word cloud of news for a single day
  - Want to select articles so that most words are "covered"



# **Diversity as Coverage**

### What is being covered?

- Q: What is being covered?
- A: Concepts (In our case: Named entities)



# Q: Who is doing the covering?A: Documents

#### Simple Abstract Model

#### Suppose we are given a set of documents D

- Each document d covers a set X<sub>d</sub> of words/topics/named entities W

$$F(A) = \bigcup_{i \in A} X_i$$

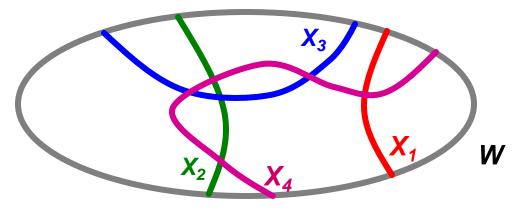
Goal: We want to

 $\max_{|A| \le k} F(A)$ 

• Note: F(A) is a set function: F(A): Sets  $\rightarrow \mathbb{N}$ 

#### **Maximum Coverage Problem**

 Given universe of elements W = {w<sub>1</sub>,..., w<sub>n</sub>} and sets X<sub>1</sub>,..., X<sub>m</sub>⊆W



Goal: Find k sets X<sub>i</sub> that cover the most of W

- More precisely: Find k sets X<sub>i</sub> whose size of the union is the largest
- Bad news: A known NP-complete problem

#### Simple Heuristic: Greedy Algorithm:

- Start with  $A_0 = \{ \}$
- For *i* = 1 ... *k*

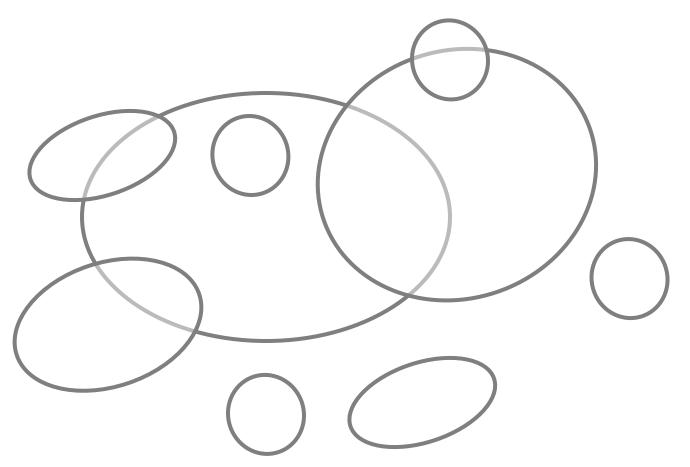
• Find set d that  $\max F(A_{i-1} \cup \{d\})$ 

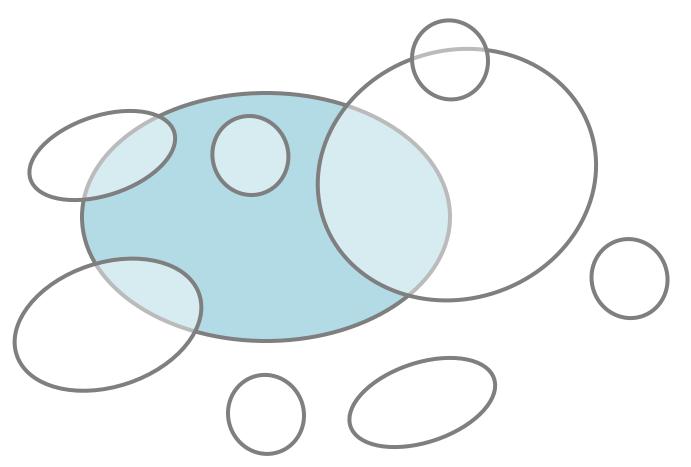
- Let 
$$oldsymbol{A_i} = oldsymbol{A_{i-1}} \cup \{oldsymbol{d}\}$$

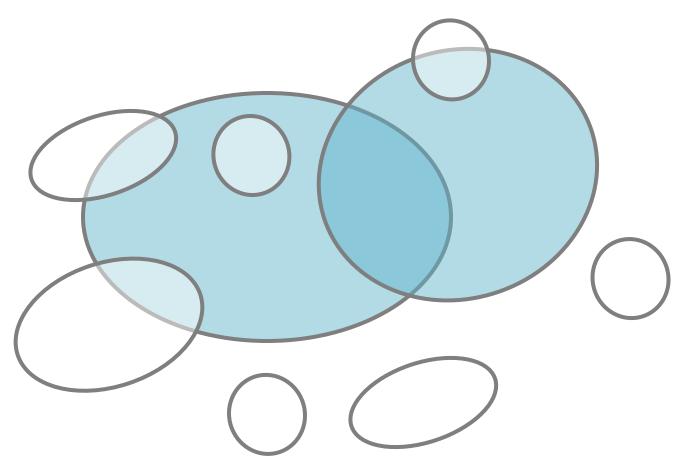
$$F(A) = \left| \bigcup_{d \in A} X_d \right|$$

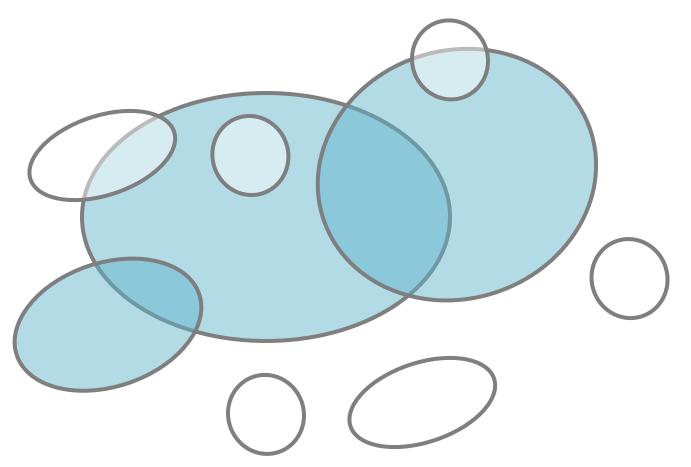
#### Example:

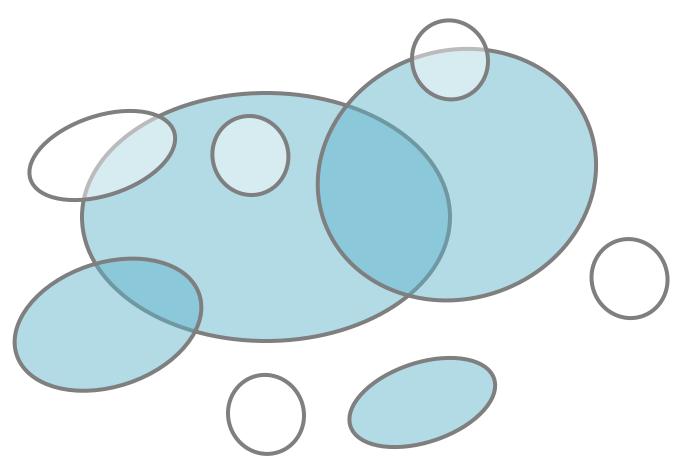
- Eval.  $F(\{d_1\}), \dots, F(\{d_m\}), pick best (say d_1)$
- Eval.  $F(\{d_1\} \cup \{d_2\}), ..., F(\{d_1\} \cup \{d_m\}),$  pick best (say  $d_2$ )
- Eval.  $F(\{d_1, d_2\} \cup \{d_3\}), \dots, F(\{d_1, d_2\} \cup \{d_m\})$ , pick best
- And so on...



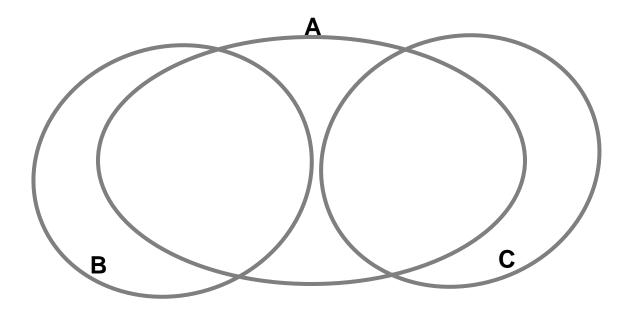








#### When Greedy Heuristic Fails?



Goal: Maximize the size of the covered area

- Greedy first picks A and then C
- But the optimal way would be to pick B and C

#### **Approximation Guarantee**

<u>Greedy</u> produces a solution A where: F(A) ≥ (1-1/e)\*OPT (F(A) ≥ 0.63\*OPT) [Nemhauser, Fisher, Wolsey '78]

#### Claim holds for functions F(·) with 2 properties:

• *F* is monotone: (adding more docs doesn't decrease coverage) if  $A \subseteq B$  then  $F(A) \leq F(B)$  and  $F({})=0$ 

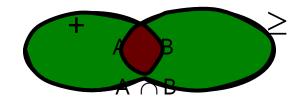
#### F is submodular:

adding an element to a set gives less improvement than adding it to one of its subsets

### **Submodularity: Definition**

#### **Definition:**

 Set function *F(·)* is called submodular if: For all *A,B⊆W*:
 *F(A) + F(B) ≥ F(A∪B) + F(A∩B)*



╋

## Submodularity: Or equivalently

- Diminishing returns characterization
   Equivalent definition:
- Set function *F(·)* is called submodular if:
   For all *A C B*:

 $F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$ Gain of adding **d** to a large set Gain of adding **d** to a small set Large improvement Small improvement

#### **Example: Set Cover**

#### F(·) is submodular: A ⊆ B

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\})$$

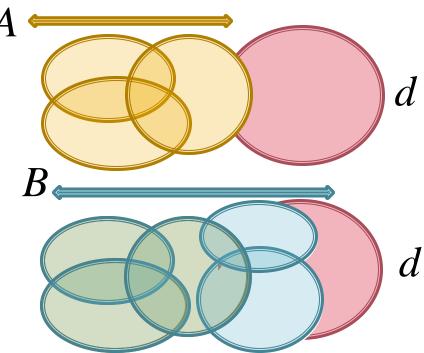
Gain of adding **d** to a small set

#### Natural example:

- Sets  $d_1, \ldots, d_m$
- $F(A) = |\bigcup_{i \in A} d_i|$ (size of the covered area)
- <u>Claim:</u>
   *F*(*A*) is submodular!

Gain of adding **d** to a large set

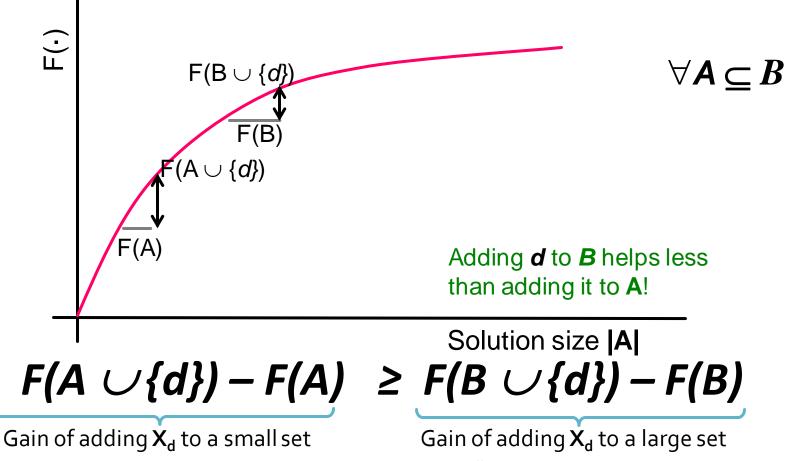
-F(B)



Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

### Submodularity– Diminishing returns





Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

### Submodularity & Concavity

Marginal gain:  $\Delta_F(d|A) = F(A \cup \{d\}) - F(A)$  $A \subset B$ Submodular:  $F(A \cup \{d\}) - F(A) \ge F(B \cup \{d\}) - F(B)$ Concavity:  $a \leq b$  $f(a+d) - f(a) \ge f(b+d) - f(b)$ F(A)

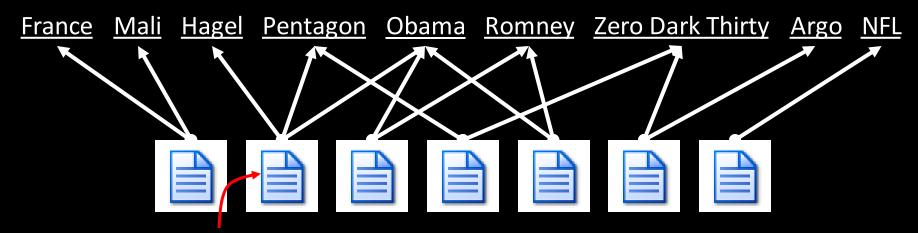
#### Submodularity: Useful Fact

- Let  $F_1 \dots F_m$  be submodular and  $\lambda_1 \dots \lambda_m > 0$ then  $F(A) = \sum_{i=1}^m \lambda_i F_i(A)$  is submodular
  - Submodularity is closed under non-negative linear combinations!
- This is an extremely useful fact:
  - Average of submodular functions is submodular:  $F(A) = \sum_{i} P(i) \cdot F_{i}(A)$
  - Multicriterion optimization:  $F(A) = \sum_i \lambda_i F_i(A)$

#### **Back to our problem**

#### Q: What is being covered?

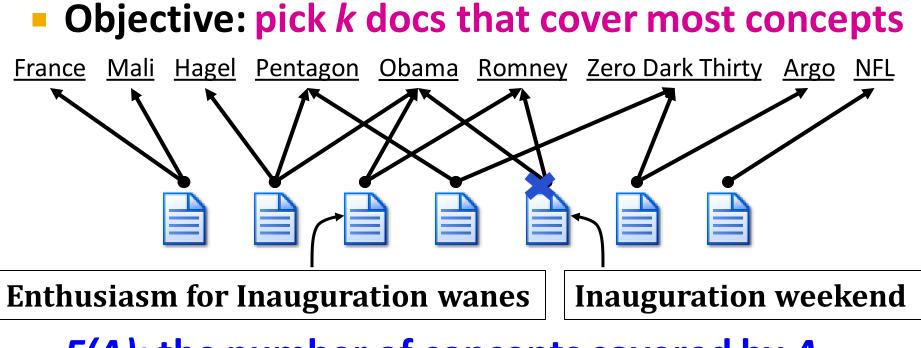
A: Concepts (In our case: Named entities)



Hagel expects fight

# Q: Who is doing the covering?A: Documents

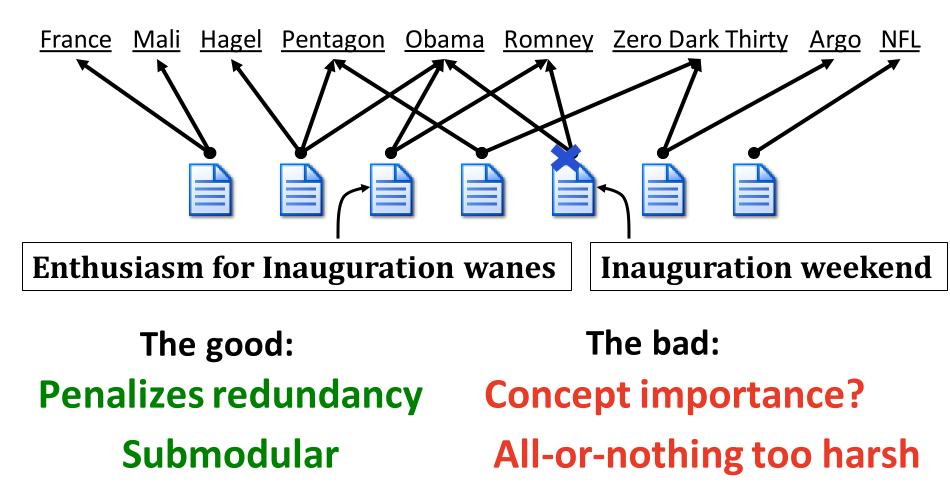
### **Back to our Concept Cover Problem**



- F(A): the number of concepts covered by A
  - Elements...concepts, Sets ... concepts in docs
  - F(A) is submodular and monotone!
  - We can use greedy algorithm to optimize F

#### **The Set Cover Problem**

#### Objective: pick k docs that cover most concepts



### **Probabilistic Set Cover**

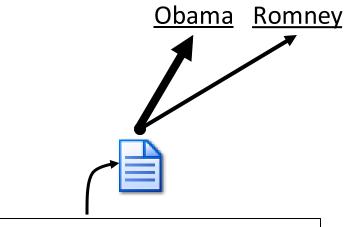
#### **Concept importance?**

#### **Objective:** pick *k* docs that cover most concepts <u>Pentagon</u> <u>Obama</u> <u>Romney</u> <u>Zero Dark Thirty</u> France Mali Hagel <u>Argo</u> NFL **Inauguration weekend Enthusiasm for Inauguration wanes**

#### Each concept c has importance weight w<sub>c</sub>

### All-or-nothing too harsh

#### Document coverage function $\operatorname{cover}_d(c) = \operatorname{probability} \operatorname{document} \mathbf{d} \operatorname{covers}$ $\operatorname{concept} \mathbf{c}$ [e.g., how strongly $\mathbf{d} \operatorname{covers} \mathbf{c}$ ]



#### **Enthusiasm for Inauguration wanes**

#### **Probabilistic Set Cover**

#### Document coverage function: $cover_d(c) = probability$ document d covers concept c

Cover<sub>d</sub>(c) can also model how relevant is concept c for user u

#### Set coverage function:

$$\operatorname{cover}_{\mathcal{A}}(c) = 1 - \prod_{d \in \mathcal{A}} (1 - \operatorname{cover}_d(c))$$

Prob. that at least one document in A covers c

Objective:  

$$\max_{\mathcal{A}: |\mathcal{A}| \leq k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

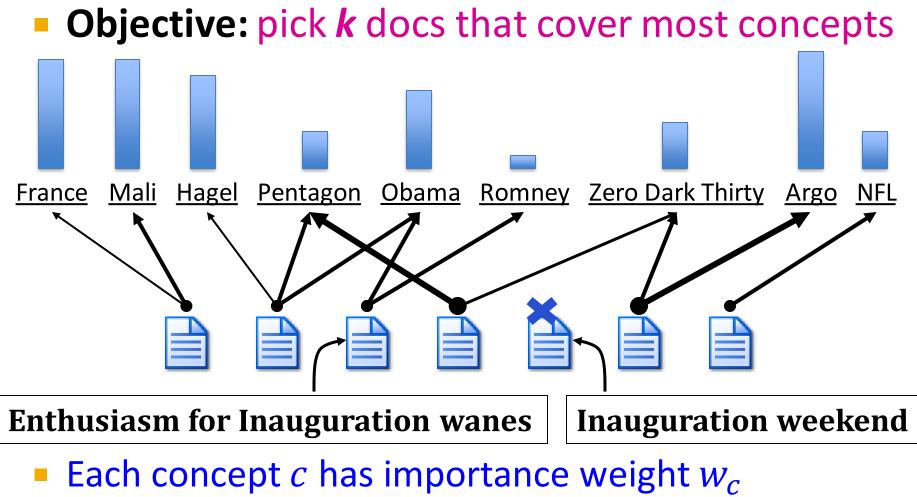
## **Optimizing F(A)**

$$\max_{\mathcal{A}:|\mathcal{A}| \le k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

The objective function is also submodular

- Intuitively, it has a diminishing returns property
- Greedy algorithm leads to a (1 1/e) ~ 63% approximation, i.e., a near-optimal solution

#### Summary: Probabilistic Set Cover



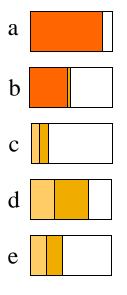
Documents partially cover concepts: cover<sub>d</sub>(c)

Lazy Optimization of Submodular Functions

## **Submodular Functions**

#### Greedy

Marginal gain:  $F(A \cup x)-F(A)$ 



#### Greedy algorithm is slow!

- At each iteration we need to re-evaluate marginal gains of all remaining documents
- Runtime O(|D| · K) for selecting K documents out of the set of D of them

Add document with highest marginal gain

## Speeding up Greedy

- In round *i*: So far we have  $A_{i-1} = \{d_1, ..., d_{i-1}\}$ 
  - Now we pick  $\mathbf{d}_i = \arg \max_{d \in V} F(A_{i-1} \cup \{d\}) F(A_{i-1})$ 
    - Greedy algorithm maximizes the "marginal benefit"  $\Delta_i(d) = F(A_{i-1} \cup \{d\}) - F(A_{i-1})$
- By submodularity property:  $F(A_i \cup \{d\}) - F(A_i) \ge F(A_j \cup \{d\}) - F(A_j)$  for i < j
- Observation: By submodularity: For every  $d \in D$  $\Delta_i(d) \ge \Delta_j(d)$  for i < j since  $A_i \subseteq A_j$
- Marginal benefits  $\Delta_i(d)$  only shrink! d (as *i* grows) Selecting document *d* in step *i* covers more words than selecting *d* at step *j* (*j*>*i*)

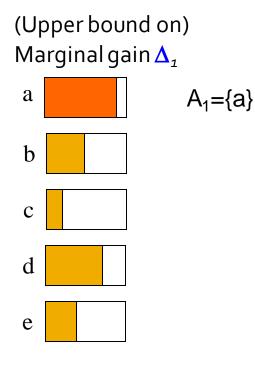
 $\Delta_i(\mathbf{d}) \geq \Delta_i(\mathbf{d})$ 

## Lazy Greedy

#### Idea:

- Use ∆<sub>i</sub> as upper-bound on ∆<sub>j</sub> (j > i)
  Lazy Greedy:
  - Keep an ordered list of marginal benefits ∆<sub>i</sub> from previous iteration
  - Re-evaluate <sup>A</sup><sub>i</sub> only for top element
  - Re-sort and prune

#### $F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$

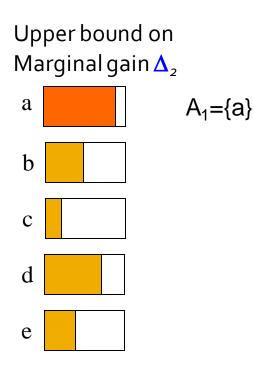


## Lazy Greedy

#### Idea:

- Use ∆<sub>i</sub> as upper-bound on ∆<sub>j</sub> (j > i)
  Lazy Greedy:
  - Keep an ordered list of marginal benefits ∆<sub>i</sub> from previous iteration
  - Re-evaluate <sup>A</sup><sub>i</sub> only for top element
  - Re-sort and prune

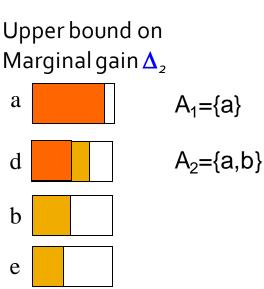
#### $F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$



## Lazy Greedy

#### Idea:

- Use ∆<sub>i</sub> as upper-bound on ∆<sub>j</sub> (j > i)
  Lazy Greedy:
  - Keep an ordered list of marginal benefits ∆<sub>i</sub> from previous iteration
  - Re-evaluate  $\Delta_i$  only for top element
  - Re-sort and prune



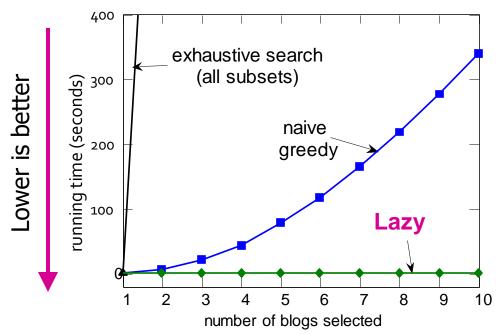
С

#### $F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$

## Summary so far

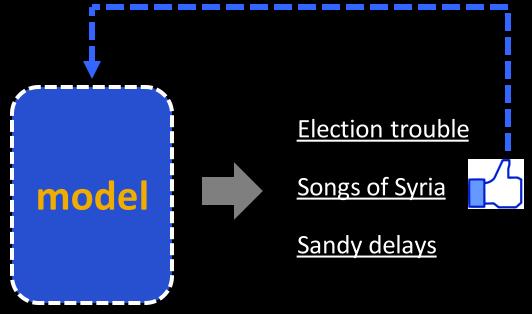
#### Summary so far:

- Diversity can be formulated as a set cover
- Set cover is submodular optimization problem
- Can be (approximately) solved using greedy algorithm
- Lazy-greedy gives significant speedup



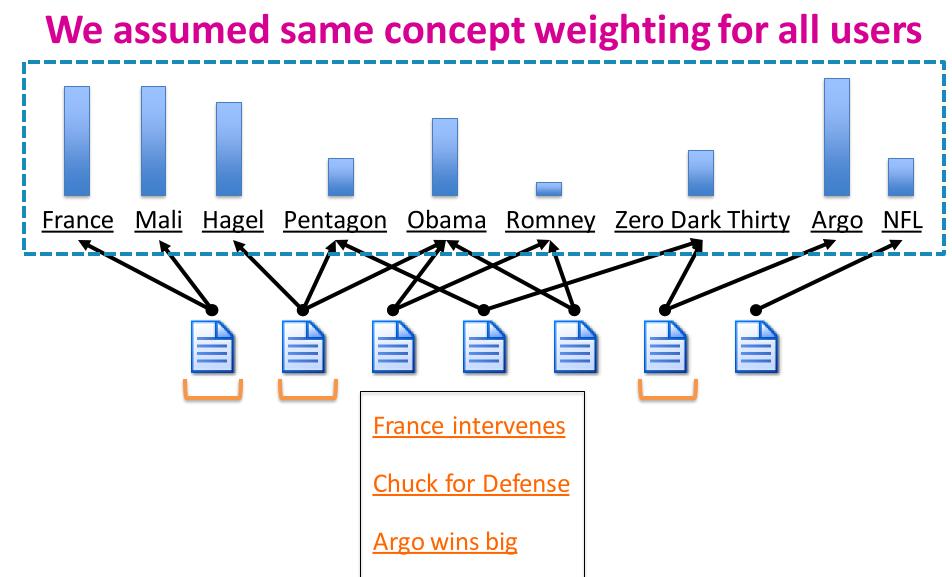
Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

# But what about personalization?



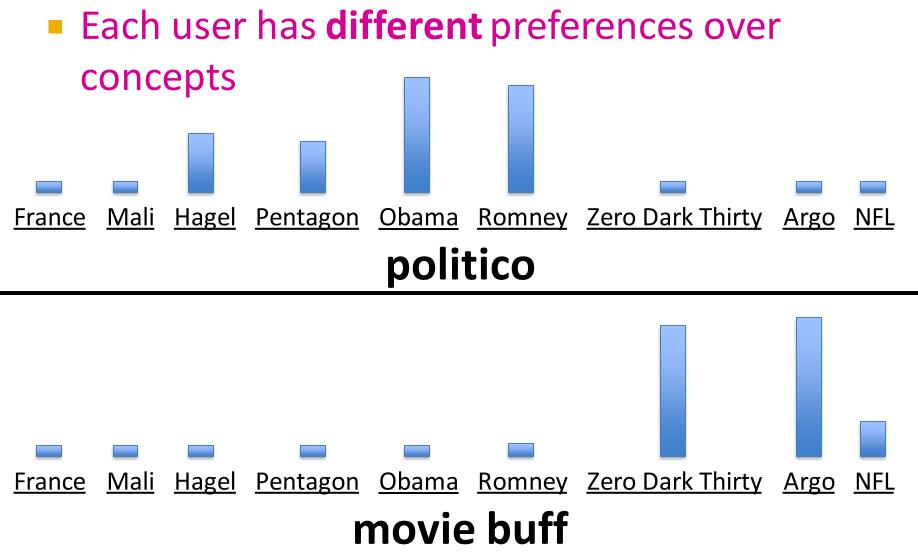
#### Recommendations

#### **Concept Coverage**



Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

## **Personal Concept Weights**



Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

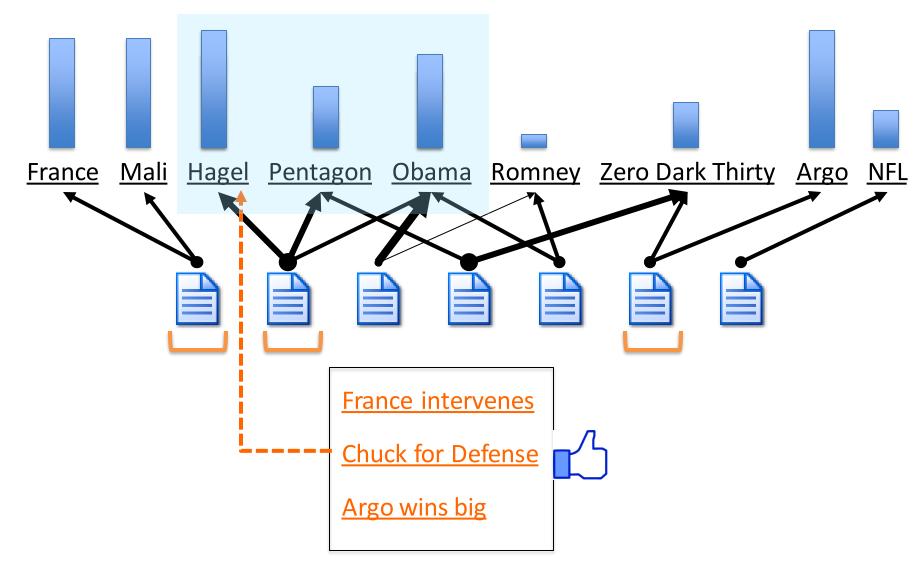
## Personal concept weights

Assume each user *u* has different preference vector *w<sub>c</sub><sup>(u)</sup>* over concepts *c* 

$$\max_{\mathcal{A}:|\mathcal{A}| \le k} F(\mathcal{A}) = \sum_{c} w_{c} \operatorname{cover}_{\mathcal{A}}(c)$$
$$\max_{\mathcal{A}:|\mathcal{A}| \le k} F(\mathcal{A}) = \sum_{c} w_{c}^{(u)} \operatorname{cover}_{\mathcal{A}}(c)$$

 Goal: Learn personal concept weights from user feedback

#### **Interactive Concept Coverage**



Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

## **Multiplicative Weights (MW)**

#### Multiplicative Weights algorithm

- Assume each concept c has weight  $w_c$
- We recommend document *d* and receive feedback, say *r* = +1 or -1
- Update the weights:
  - For each  $c \in X_d$  set  $w_c = \beta^r w_c$ 
    - If concept c appears in doc d and we received positive feedback r=+1 then we increase the weight w<sub>c</sub> by multiplying it by β (β > 1) otherwise we decrease the weight (divide by β)
  - Normalize weights so that  $\sum_c w_c = 1$

## Summary of the Algorithm

#### Steps of the algorithm:

- 1. Identify **items** to recommend from
- 2. Identify **concepts** [what makes items redundant?]
- 3. Weigh concepts by general importance
- 4. Define item-concept coverage function
- 5. Select items using probabilistic set cover
- 6. Obtain **feedback**, **update** weights