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 Date:
▪ Monday, March 11 2:00 PM – 

Wednesday, March 13, 2:00 PM Pacific Time
▪ Logistics:
▪ Administered on Gradescope
▪ 3 hours long (timer starts once you open the exam)
▪ Submitting answers (all questions visible at the same time):

 One PDF for the entire exam (uploaded at the top of the exam)
 One PDF for each question (uploaded to each question)
▪ You can do this as you go through the questions (do not need to 

wait until the end)
 Write answers directly in text boxes

▪ Please budget your time for submission (~10 min) and solve 
questions you find easy first – the exam tends to be on the 
longer side
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 If you think a question isn't clear on the 
exam...

▪ Ask on Ed or state your (reasonable 
and valid) assumptions in your answer

▪ We will actively monitor Ed on...

▪ Monday: 2 PM – 10 PM PT

▪ Tuesday: 8 AM – 3 PM, 5 PM – 10 PM PT

▪ Wednesday: 8 AM – 2 PM PT

▪ We will answer clarifying questions only

 Exam Review Session: Friday, 6 PM – 7 PM PT 
via Zoom (see Ed, Canvas for details)
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 Final exam is open book and open notes
 A calculator or computer is REQUIRED
▪ You may only use your computer to do arithmetic 

calculations (i.e., the buttons found on a standard 
scientific calculator)

▪ You may also use your computer to read course 
notes or the textbook

▪ No use of AI chatbots (including, but not limited 
to, ChatGPT)

▪ No collaboration with other students
 Practice finals are posted on Ed, Gradescope
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Good luck with the exam! ☺ 
 You Have Done a Lot!!!
 And (hopefully) learned a lot!!!
▪ Answered questions and 

proved many interesting results
▪ Implemented a number of methods

Thank You for the
Hard Work!
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CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our 
material useful for giving your own lectures. Feel free to use these slides verbatim, or to 
modify them to fit your own needs. If you make use of a significant portion of these slides 
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org 

http://www.mmds.org/


 Redundancy leads to a bad user experience

▪ Uncertainty around information need => don’t 
put all eggs in one basket

 How do we optimize for diversity directly?
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Monday, January 14

France intervenes

Chuck for Defense

Argo wins big

Hagel expects fight
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Monday, January 14

France intervenes

Chuck for Defense

Argo wins big

New gun proposals
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 Idea: Encode diversity as coverage problem
 Example: Word cloud of news for a single day

▪ Want to select articles so that most words are 
“covered”
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 Q: What is being covered?
 A: Concepts (In our case: Named entities)

 Q: Who is doing the covering?
 A: Documents

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Hagel expects fight
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 Suppose we are given a set of documents D

▪ Each document d covers a set 𝑿𝒅 of 
words/topics/named entities W

 For a set of documents A  D we define

𝑭 𝑨 = ራ

𝒊∈𝑨

𝑿𝒊

 Goal: We want to 
max
𝑨 ≤𝒌

𝑭(𝑨)

 Note: F(A) is a set function: 𝑭 𝑨 : 𝐒𝐞𝐭𝐬 → ℕ

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu3/7/2024 13



 Given universe of elements 𝑾 =  {𝒘𝟏, … , 𝒘𝒏} 
and sets 𝑿𝟏, … , 𝑿𝒎  

 𝑾

 Goal: Find k sets Xi that cover the most of W

▪ More precisely: Find k sets Xi whose size of the 
union is the largest

▪ Bad news: A known NP-complete problem
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Simple Heuristic: Greedy Algorithm:
 Start with 𝑨𝟎 = { }
 For 𝒊 = 𝟏 … 𝒌

▪ Find set 𝒅 that 𝐦𝐚𝐱 𝑭(𝑨𝒊−𝟏 ∪ {𝒅})

▪ Let 𝑨𝒊 = 𝑨𝒊−𝟏  {𝒅}

 Example:
▪ Eval. 𝑭 𝒅𝟏 , … , 𝑭({𝒅𝒎}), pick best (say 𝒅𝟏)

▪ Eval. 𝑭 𝒅𝟏} ∪ {𝒅𝟐 , … , 𝑭({𝒅𝟏} ∪ {𝒅𝒎}), pick best (say 𝒅𝟐)

▪ Eval. 𝑭({𝒅𝟏, 𝒅𝟐} ∪ {𝒅𝟑}), … , 𝑭({𝒅𝟏, 𝒅𝟐} ∪ {𝒅𝒎}), pick best

▪ And so on…
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𝑭 𝑨 = ራ

𝒅∈𝑨

𝑿𝒅
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 Goal: Maximize the covered area
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 Goal: Maximize the covered area

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu3/7/2024 20



 Goal: Maximize the size of the covered area
 Greedy first picks A and then C
 But the optimal way would be to pick B and C
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A

B C
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 Greedy produces a solution A 
where: F(A)  (1-1/e)*OPT    (F(A)  0.63*OPT)
[Nemhauser, Fisher, Wolsey ’78]

 Claim holds for functions F(·) with 2 properties:

▪ F is monotone: (adding more docs doesn’t decrease coverage)

if A  B then F(A)  F(B) and F({})=0

▪ F is submodular:
adding an element to a set gives less improvement 
than adding it to one of its subsets
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Definition:
 Set function F(·) is called submodular if:

For all A,B W:
 F(A) + F(B)   F(A B) + F(A B)
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BA A  B

A   B

++ 
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 Diminishing returns characterization 
Equivalent definition:
 Set function F(·) is called submodular if:

For all A B:
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dB      A

d

+

+

Large improvement

Small improvement

Gain of adding d to a small set Gain of adding d to a large set

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)
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 F(·) is submodular: A  B 

 Natural example:

▪ Sets 𝑑1, … , 𝑑𝑚  

▪ 𝐹 𝐴 = 𝑖∈𝐴ڂ 𝑑𝑖     
(size of the covered area)

▪ Claim: 
𝑭(𝑨) is submodular!
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A

B

d

d

Gain of adding d to a small set Gain of adding d to a large set

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)
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 Submodularity is discrete analogue of 
concavity
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F
(·

)

Solution size |A|

F(A)

F(A  {d})

F(B  {d}) A  B 

F(B)

Adding d to B helps less

than adding it to A!

Gain of adding Xd to a small set Gain of adding Xd to a large set

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)
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 Marginal gain: 
𝚫𝑭 𝒅 𝑨 = 𝑭 𝑨 ∪ {𝒅} − 𝑭(𝑨)

 Submodular:
𝑭 𝑨 ∪ {𝒅} − 𝑭 𝑨 ≥ 𝑭 𝑩 ∪ {𝒅} − 𝑭(𝑩)

 Concavity:
𝒇 𝒂 + 𝒅 − 𝒇 𝒂 ≥ 𝒇 𝒃 + 𝒅 − 𝒇(𝒃)
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𝐴 ⊆ 𝐵

𝑎 ≤ 𝑏

F
(A

)

|A|
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 Let 𝑭𝟏 … 𝑭𝒎 be submodular and 𝝀𝟏 … 𝝀𝒎 > 𝟎 
then 𝑭 𝑨 = σ𝒊=𝟏

𝒎 𝝀𝒊𝑭𝒊 𝑨  is submodular

▪ Submodularity is closed under non-negative 
linear combinations!

 This is an extremely useful fact:

▪ Average of submodular functions is submodular: 
𝑭 𝑨 = σ𝒊 𝑷 𝒊 ⋅ 𝑭𝒊 𝑨

▪ Multicriterion optimization: 𝑭 𝑨 = σ𝒊 𝝀𝒊𝑭𝒊 𝑨
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 Q: What is being covered?
 A: Concepts (In our case: Named entities)

 Q: Who is doing the covering?
 A: Documents

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Hagel expects fight

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu3/7/2024 29



 Objective: pick k docs that cover most concepts

 F(A): the number of concepts covered by A

▪ Elements…concepts, Sets … concepts in docs

▪ F(A) is submodular and monotone! 

▪ We can use greedy algorithm to optimize F

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Enthusiasm for Inauguration wanes Inauguration weekend
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 Objective: pick k docs that cover most concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Penalizes redundancy

Enthusiasm for Inauguration wanes Inauguration weekend

Submodular

Concept importance?

All-or-nothing too harsh
Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

The good: The bad:
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 Objective: pick k docs that cover most concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Enthusiasm for Inauguration wanes Inauguration weekend
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 Each concept 𝒄 has importance weight 𝒘𝒄
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 Document coverage function
                  probability document d covers

                     concept c
[e.g., how strongly d covers c]

Obama Romney

Enthusiasm for Inauguration wanes
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 Document coverage function:
                  probability document d covers

                     concept c
▪ Coverd(c) can also model how relevant is concept c for user u

 Set coverage function:

▪ Prob. that at least one document in A covers c

 Objective:
concept weights
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 The objective function is also submodular

▪ Intuitively, it has a diminishing returns property

▪ Greedy algorithm leads to a (1 – 1/e) ~ 63% 
approximation, i.e., a near-optimal solution
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 Objective: pick k docs that cover most concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Enthusiasm for Inauguration wanes Inauguration weekend

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Each concept 𝑐 has importance weight 𝑤𝑐
 Documents partially cover concepts: 𝐜𝐨𝐯𝐞𝐫𝒅(𝒄)
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 Greedy algorithm is slow!

▪ At each iteration we need to 
re-evaluate marginal gains of 
all remaining documents

▪ Runtime 𝑶(|𝑫| · 𝑲) for 
selecting 𝑲 documents out of the 
set of 𝑫 of them
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a

b

c

d

Marginal gain:
F(Ax)-F(A)

e

Greedy

Add document with 
highest marginal gain
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 In round 𝒊: So far we have 𝑨𝒊−𝟏  =  {𝒅𝟏, … , 𝒅𝒊−𝟏}

▪ Now we pick 𝐝𝒊 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒅∈𝑽

𝑭(𝑨𝒊−𝟏 ∪ {𝒅}) − 𝑭(𝑨𝒊−𝟏)

▪ Greedy algorithm maximizes the “marginal benefit” 
𝚫𝒊 𝒅  = 𝑭(𝑨𝒊−𝟏 ∪  {𝒅})  − 𝑭(𝑨𝒊−𝟏)

 By submodularity property:

 𝐹 𝐴𝑖 ∪ 𝑑 − 𝐹 𝐴𝑖 ≥ 𝐹 𝐴𝑗 ∪ 𝑑 − 𝐹 𝐴𝑗  for 𝑖 < 𝑗

 Observation: By submodularity: 
For every 𝒅 ∈ 𝑫  
𝚫𝒊(𝒅) ≥ 𝚫𝒋(𝒅)  for 𝒊 <  𝒋 since 𝑨𝒊 

 𝑨𝒋

 Marginal benefits 𝚫𝒊(𝒅) only shrink!
(as i grows)
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d

i(d)   j(d)

[Leskovec et al., KDD ’07]

Selecting document d in step i covers 

more words than selecting d at step j (j>i)
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 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top 
element

▪ Re-sort and prune
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a

b

c

d

e

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)

A1={a}

A  B 

(Upper bound on)
Marginal gain 1
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 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top 
element

▪ Re-sort and prune
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a

d

b

c

e

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B) A  B 

A1={a}

Upper bound on 
Marginal gain 2
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 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top element

▪ Re-sort and prune

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

a

c

d

b

e

Upper bound on 
Marginal gain 2

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)

A1={a}

A2={a,b}

A  B 
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 Summary so far:
▪ Diversity can be formulated as a set cover

▪ Set cover is submodular optimization problem

▪ Can be (approximately) solved using greedy algorithm

▪ Lazy-greedy gives significant speedup
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But what about 
personalization?

model

Election trouble

Songs of Syria

Sandy delays

Recommendations
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France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

France intervenes

Chuck for Defense

Argo wins big

We assumed same concept weighting for all users
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 Each user has different preferences over 
concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

politico

movie buff
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 Assume each user u has different preference 
vector wc

(u) over concepts c

 Goal: Learn personal concept weights from 
user feedback
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France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

France intervenes

Chuck for Defense

Argo wins big
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 Multiplicative Weights algorithm

▪ Assume each concept 𝒄 has weight 𝒘𝒄

▪ We recommend document 𝒅 and receive feedback, 
say 𝒓 = +1 or -1

▪ Update the weights:

▪ For each 𝒄 ∈ 𝑿𝒅 set 𝒘𝒄 = 𝜷𝒓𝒘𝒄

▪ If concept c appears in doc d and we received positive feedback r=+1 
then we increase the weight wc by multiplying it by 𝜷 (𝜷 > 𝟏) 
otherwise we decrease the weight (divide by 𝜷)

▪ Normalize weights so that σ𝒄 𝒘𝒄 = 𝟏
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 Steps of the algorithm:

1. Identify items to recommend from

2. Identify concepts [what makes items redundant?]

3. Weigh concepts by general importance

4. Define item-concept coverage function

5. Select items using probabilistic set cover

6. Obtain feedback, update weights
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