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 Web advertising
▪ We discussed how to 

match advertisers to 
queries in real-time 

▪ But we did not discuss 
how to estimate the CTR
(Click-Through Rate)

 Recommendation engines
▪ We discussed how to build

recommender systems

▪ But we did not discuss
the cold-start problem
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 Google’s goal: Maximize revenue
 The old way: Pay by impression (CPM)

▪ Best strategy: Go with the highest bidder

▪ But this ignores the “effectiveness” of an ad

 The new way: Pay per click! (CPC)

▪ Best strategy: Go with expected revenue

▪ What’s the expected revenue of ad a for query q?

▪ E[revenuea,q] = P(clicka | q) * amounta,q
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Bid amount for 

ad a on query q

(Known)

Prob. user will click on ad a given 

that she issues query q

(Unknown! Need to gather information)



 Clinical trials:

▪ Investigate effects of different treatments while 
minimizing adverse effects on patients

 Adaptive routing:

▪ Minimize delay in the network by investigating 
different routes

 Asset pricing:

▪ Figure out product prices while trying to make 
most money
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 Each arm a

▪ Wins (reward=1) with fixed (unknown) prob. μa

▪ Loses (reward=0) with fixed (unknown) prob. 1-μa

 All draws are independent given μ1 … μk

 How to pull arms to maximize total reward?
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 How does this map to our setting?
 Each query is a bandit
 Each ad is an arm
 We want to estimate μa, the arm’s probability of 

winning (i.e., ad’s CTR μa)
 Every time we pull an arm we do an ‘experiment’
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The setting:
 Set of k choices (arms)
 Each choice a is associated with unknown 

probability distribution Pa supported in [0,1]
 We play the game for T rounds
 In each round t: 
▪ (1) We pick some arm a 

▪ (2) We obtain random sample Xt from Pa 
▪ Note reward is independent of previous draws

 Our goal is to maximize σ𝒕=𝟏
𝑻 𝑿𝒕

 Problem: we don’t know μa! But every time we 
pull some arm a we get to learn a bit about μa
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 Online optimization with limited feedback

 Like in online algorithms:

▪ Have to make a choice each time

▪ But we only receive information about the 
chosen action
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Choices X1 X2 X3 X4 X5 X6 …

a1 1 1

a2 0 1 0

…

ak 0

Time



 Policy: a strategy/rule that tells me 
which arm to pull in each iteration

▪ Hopefully policy depends on the history of 
rewards

 How to quantify performance of the 
algorithm? Regret!
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 Let 𝝁𝒂  be the mean reward of 𝑷𝒂

 Payoff/reward of best arm: 𝝁∗ = 𝐦𝐚𝐱
𝒂

𝝁𝒂

 Let 𝒊𝟏, 𝒊𝟐 … 𝒊𝑻 be the sequence of arms pulled
 Instantaneous regret at time 𝒕: 𝒓𝒕 = 𝝁∗ − 𝝁𝒊𝒕

 Total regret: 

𝑹𝑻 = 

𝒕=𝟏

𝑻

𝒓𝒕

 Typical goal: Want a policy (arm allocation 

strategy) that guarantees: 
𝑹𝑻

𝑻
→ 𝟎 as 𝑻 → ∞

▪ Note: Ensuring 𝑅𝑇/𝑇 → 0 is stronger than maximizing payoffs (minimizing 

regret), as it means that in the limit we discover the true best hand.
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 If we knew the payoffs, which arm would we 
pull?

𝐏𝐢𝐜𝐤 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒂

𝝁𝒂

 What if we only care about estimating 
payoffs 𝝁𝒂?

▪ Pick each of 𝒌 arms equally often: 
𝑻

𝒌

▪ Estimate: ෞ𝝁𝒂 =
𝒌

𝑻
σ𝒋=𝟏

𝑻/𝒌
𝑿𝒂,𝒋  

▪ Regret: 𝑹𝑻 =
𝑻

𝒌
σ𝒂=𝟏

𝒌 (𝝁∗ − ෞ𝝁𝒂)
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𝑋𝑎,𝑗… payoff received

when pulling arm 𝑎 for

𝑗-th time



 Regret is defined in terms of average reward
 So, if we can estimate avg. reward we can 

minimize regret
 Consider algorithm: Greedy

Take the action with the highest avg. reward
▪ Example: Consider 2 actions
▪ A1 reward 1 with prob. 0.3 

▪ A2 has reward 1 with prob. 0.7

▪ Play A1, get reward 1

▪ Play A2, get reward 0

▪ Now avg. reward of A1 will never drop to 0, 
and we will never play action A2
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 The example illustrates a classic problem in  
decision making:

▪ We need to trade off between exploration 
(gathering data about arm payoffs) and 
exploitation (making decisions based on data 
already gathered)

 The Greedy algo does not explore sufficiently

▪ Exploration: Pull an arm we never pulled before

▪ Exploitation: Pull an arm 𝒂 for which we currently 
have the highest estimate of 𝝁𝒂
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 The problem with our Greedy algorithm is 
that it is too certain in the estimate of 𝝁𝒂

▪ When we have seen a single reward of 0 we 
shouldn’t conclude the average reward is 0

 Greedy can converge to a suboptimal 
solution!
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Algorithm: Epsilon-Greedy
 For t=1:T

▪ Set 𝜺𝒕 = 𝑶
𝟏

𝒕
   (that is, 휀𝑡 decays over time 𝑡 as 1/𝑡)

▪ With prob. 𝜺𝒕: Explore by picking an arm chosen 
uniformly at random

▪ With prob. 𝟏 − 𝜺𝒕: Exploit by picking an arm with 
highest empirical mean payoff

 Theorem [Auer et al. ‘02]
For suitable choice of 𝜺𝒕 it holds that 

𝑅𝑇 = 𝑂(𝑘 log 𝑇) ֜
𝑅𝑇

𝑇
= 𝑂

𝑘 log 𝑇

𝑇
→ 0
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k…number 

of arms



 What are some issues with Epsilon-Greedy?

▪ “Not elegant”: Algorithm explicitly distinguishes 
between exploration and exploitation

▪ More importantly: Exploration makes suboptimal 
choices (since it picks any arm equally likely)

 Idea: When exploring/exploiting we need to 
compare arms
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 Suppose we have done experiments:
▪ Arm 1: 1 0 0 1 1 0 0 1 0 1 

▪ Arm 2: 1

▪ Arm 3: 1 1 0 1 1 1 0 1 1 1
 Mean arm values:
▪ Arm 1: 5/10,  Arm 2: 1,  Arm 3: 8/10

 Which arm would you pick next?

 Idea: Don’t just look at the mean (that is, 
expected payoff) but also the confidence!
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 A confidence interval is a range of values within 
which we are sure the mean lies with a certain 
probability

▪ We could believe 𝝁𝒂 is within [0.2,0.5] with 
probability 0.95

▪ If we would have tried an action less often, our 
estimated reward is less accurate so the confidence 
interval is larger

▪ Interval shrinks as we get more information 
(try the action more often)
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 Assuming we know the confidence intervals

 Then, instead of trying the action with the 
highest mean we can try the action with the 
highest upper bound on its confidence interval

 This is called an optimistic policy

▪ We believe an action is as good as possible 
given the available evidence
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𝝁𝒂

arm a

99.99% confidence

interval

𝝁𝒂

arm a

After more

exploration



Suppose we fix arm a:
 Let 𝑿𝒂,𝟏 … 𝑿𝒂,𝒎 be the payoffs of arm a in the 

first m trials

▪ So, 𝑿𝒂,𝟏 … 𝑿𝒂,𝒎 are i.i.d. rnd. vars. taking values in [0,1]

 Mean payoff of arm a: 𝝁𝒂 = 𝑬[𝑿𝒂,⋅]

 Our estimate: ෟ𝝁𝒂,𝒎 =
𝟏

𝒎
σℓ=𝟏

𝒎 𝑿𝒂,ℓ

 Want to find 𝒃 such that with 

high probability 𝝁𝒂 − ෟ𝝁𝒂,𝒎 ≤ 𝒃

▪ Want 𝒃 to be as small as possible (so our estimate is close)

 Goal: Want to bound 𝐏( 𝝁𝒂 − ෟ𝝁𝒂,𝒎 ≥ 𝒃)
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Hoeffding’s inequality provides an upper bound on 
the probability that the average deviates from its expected 
value by more than a certain amount:
▪ Let 𝑿𝟏 … 𝑿𝒎 be i.i.d. rnd. vars. taking values in [0,1]

▪ Let 𝝁 = 𝑬[𝑿]    and    ෞ𝝁𝒎 =
𝟏

𝒎
σℓ=𝟏

𝒎 𝑿ℓ

▪ Then: 𝐏 𝝁 − ෞ𝝁𝒎 ≥ 𝒃 ≤ 𝟐 𝒆𝒙𝒑 −𝟐𝒃𝟐𝒎 = 𝜹
▪ 𝜹… is the confidence level

 To find out the confidence interval 𝒃 (for a given 
confidence level 𝜹) we solve:
▪ 2𝑒−2𝑏2𝑚 ≤ 𝛿  then −2𝑏2𝑚 ≤ ln(𝛿/2)

▪ So: 𝒃 ≥
𝐥𝐧

𝟐

𝜹

𝟐 𝒎
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 𝐏 𝝁 − ෞ𝝁𝒎 ≥ 𝒃 ≤ 𝟐 𝒆𝒙𝒑 −𝟐𝒃𝟐𝒎

where 𝒃 is our upper bound, 𝒎 is number of 
times we played the action

 Let’s set 𝒃 = 𝒃 𝒂, 𝑻 = 𝟐𝒍𝒐𝒈(𝑻)/𝒎𝒂

 Then: 𝐏 𝝁 − ෞ𝝁𝒎 ≥ 𝒃 ≤ 𝟐𝑻−𝟒 which 
converges to zero very quickly:

▪ Notice:

▪ If we don’t play action 𝒂, its upper bound 𝒃 increases
▪ This means we never permanently rule out an action no matter how 

poorly it performs

▪ Prob. our upper bound is wrong decreases with time 𝑻
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 UCB1 (Upper confidence sampling) algorithm

▪ Set: ෞ𝝁𝟏 = ⋯ = ෞ𝝁𝒌 = 𝟎 and 𝒎𝟏 = ⋯ = 𝒎𝒌 = 𝟎

▪ ෞ𝝁𝒂 is our estimate of payoff of arm 𝒂

▪ 𝒎𝒂 is the number of pulls of arm 𝒂 so far

▪ For t = 1:T

▪ For each arm a calculate: 𝑼𝑪𝑩 𝒂 = ෞ𝝁𝒂 + 𝜶
𝟐 ln 𝒕

𝒎𝒂

▪ Pick arm 𝒋 = 𝒂𝒓𝒈 𝒎𝒂𝒙𝒂 𝑼𝑪𝑩 𝒂

▪ Pull arm 𝒋 and observe 𝒚𝒕

▪ Set: 𝒎𝒋 ← 𝒎𝒋 + 𝟏  and  ෞ𝝁𝒋 ←
𝟏

𝒎𝒋
(𝒚𝒕 + 𝒎𝒋 − 𝟏  ෞ𝝁𝒋)
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[Auer et al. ‘02]
http://www.jmlr.org/papers/volume3/auer02a/auer02a.pdf

Upper confidence

interval (Hoeffding’s

inequality)

𝜶…is a free parameter trading off exploration vs. exploitation

http://www.jmlr.org/papers/volume3/auer02a/auer02a.pdf


𝑼𝑪𝑩 𝒂 = ෞ𝝁𝒂 + 𝜶
𝟐 ln 𝒕

𝒎𝒂

▪ Confidence interval grows with the total number of 
actions 𝒕 we have taken

▪ But shrinks with the number of times 𝒎𝒂 we have 
tried arm 𝒂

▪ This ensures each arm is tried infinitely often but still 
balances exploration and exploitation

▪ 𝜶 plays the role of 𝜹: 𝜶 = 𝒇
𝟐

𝜹
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𝒃 ≥
𝐥𝐧

𝟐
𝜹

𝟐 𝒎

“Optimism in face of uncertainty”:
The algorithm believes that it can obtain extra rewards by 
reaching the unexplored parts of the state space

𝐏 𝝁 − ෞ𝝁𝒎 ≥ 𝒃 = 𝜹



 k-armed bandit problem as a formalization of 
the exploration-exploitation tradeoff

 Analog of online optimization (e.g., SGD, 
BALANCE), but with limited feedback

 Simple algorithms are able to achieve no 
regret (in the limit)

▪ Epsilon-greedy

▪ UCB (Upper Confidence Sampling)
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 10 actions, 1M rounds, uniform [0,1] rewards
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Theoretical worse-case cumulative regret

Real cumulative regret



 Problem: For new pins/ads we do not have 
enough signal on how good they are
▪ How likely are people to interact with them?

 Idea:
▪ Try to maximize the rewards from several unknown 

slot machines by deciding which machines and the 
order to play

▪ Each pin is regarded as an arm, user engagement are 
considered as rewards

▪ Making tradeoff between exploration and 
exploitation, avoid keep showing the best known 
pins and trapping the system into local optima
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 Solution: Bandit algorithm in round t
▪ (1) Algorithm observes user is seeing a set A of 

pins/ads

▪ (2) Based on payoffs from previous trials, 
algorithm chooses arm a A and receives payoff 
rt,a

▪ Note only feedback for the chosen a is observed

▪ (3) Algorithm improves arm selection strategy with 
each observation (𝒂, 𝒓𝒕,𝒂)

 If the score for a pin is low, filter it out
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 A/B testing is a controlled experiment with 
two variants, A and B

 Part of the traffic sees variant A, part variant B

3/12/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 34



3/12/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 35

 Part of the traffic sees variant A, part variant B
 Hypothesis test: does variant A outperform 

variant B? What test to perform?

 If A outperforms B, we want to stop the 
experiment as soon as possible

Assumed Distribution Example Standard Test

Gaussian
Average Revenue Per 
Paying User

Welch's t-test (Unpaired t-test)

Binomial Click Through Rate Fisher's exact test

Poisson
Transactions Per Paying 
User

E-test

Multinomial
Number of each 
product purchased

Chi-squared test

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Welch's_t-test
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Fisher's_exact_test
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Multinomial_distribution
https://en.wikipedia.org/wiki/Chi-squared_test


 Imagine you have two versions of the website 
and you’d like to test which one is better

▪ Version A has engagement rate of 5%

▪ Version B has engagement rate of 4%

 You want to establish with 95% confidence that 
version A is better

▪ Using t-test, you’d need 22,330 observations (11,165 
in each arm) to establish that

 Can bandits do better?
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 How long does it take to discover A > B?
▪ A/B test: We need 22,330 observations. Assuming 100 

observations/day, we need 223 days

 The goal is to find the best action (A vs. B)
 The randomization distribution (traffic to A vs. B) 

can be updated as the experiment progresses
 Idea: 
▪ Twice per day, examine how each of the variations/arms 

has performed
▪ Adjust the fraction of traffic that each arm will receive 

going forward
▪ An arm that appears to be doing well gets more traffic, 

and an arm that is clearly underperforming gets less
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 Thompson sampling assigns sessions to arms 
in proportion to the probability that each arm 
is optimal.

 Assume outcome distribution in the set {0,1}
▪ The arm either converts or not

 Then we flip a coin with probability 𝜃 → Bernoulli 
distribution!

 To estimate 𝜃, we count up numbers of ones and 
zeros
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 Given observed 1s and 0s, how do we 
calculate the distribution of possible values of 
𝜃?

 Let:

▪ 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘) … the vector of conversion 
rates for arms 1, …, k.

▪ 𝜃𝑖 = #successes / (#successes + #failures)
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 Beta(𝛼,𝛽)  →  Given a 0’s and b 1’s, what is 
the distribution over means?

 𝑝 𝑥; 𝛼, 𝛽 = 𝑐 𝑥𝛼−1(1 − 𝑥)𝛽−1  

 Prior → pseudocounts

 Likelihood → observed counts

 Posterior → pseudocounts + observed counts
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 Arm probabilities 𝜽 can be computed using 
sampling:

▪ Each element of 𝜃 is an independent random variable 
from a Beta distribution (𝛼 + 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠, 𝛽 + 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)
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Thompson Sampling:
 1. Specify prior (in Beta case often Beta(1,1))

 2. Sample from each posterior distribution to 
get estimated mean for each arm

 3. Pull arm with highest mean

 4. Repeat step 2 & 3 forever
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But, in our case we have to set the amount of traffic. Set 
it to be proportional to success of each arm

▪ (1) Simulate many draws from 𝐵𝑒𝑡𝑎(𝛼+𝑆𝑎 , 𝛽 + 𝐹𝑎):

▪ (2) The probability that arm a is optimal is the 
empirical fraction of rows for which arm a had the 
largest simulated value

▪ (3) Set traffic to arm a to be equal to % of wins of arm a
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Time Arm 1 Arm 2 Arm 3

1 0.54 0.73 0.74

2 0.55 0.66 0.73

3 0.53 0.81 0.80

…



 Imagine you have two versions of the website 
and you’d like to test which one is better

▪ Version A has engagement rate of 5%

▪ Version B has engagement rate of 4%

 You want to establish with 95% confidence that 
version A is better

▪ You’d need 22,330 observations (11,165 in each arm) 
to establish that

▪ Use t-test to establish the sample size

 Can bandits do better?
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A/B test: We need 22,330 observations. Assuming 
100 observations/day, we need 223 days
 On 1st  day about 50 sessions are assigned to each 

arm
 Suppose A got really lucky on the first day, and it 

appears to have a 70% chance of being superior

 Then we assign it 70% of the traffic on the second 
day, and the variant B gets 30%

 At the end of the 2nd day we accumulate all the 
traffic we’ve seen so far (over both days), and 
recompute the probability that each arm is best
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 The experiment finished in 66 days, so it 
saved you 157 days of testing (66 vs 223)

3/12/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 46



 Easy to generalize to multiple arms:
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