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Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Citation networks and Maps of science
[Börner et al., 2012]
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Seven Bridges of Königsberg
[Euler, 1735]

Return to the starting point by traveling each 
link of the graph once and only once.



 Web as a directed graph:

▪ Nodes: Webpages

▪ Edges: Hyperlinks
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 Web as a directed graph:

▪ Nodes: Webpages

▪ Edges: Hyperlinks

Jure Leskovec, Stanford C246: Mining Massive Datasets

I teach a 
class on 

Networks. CS224W: 
Classes are 

in the 
Gates 

building Computer  
Science 

Department 
at Stanford

Stanford 
University



Jure Leskovec, Stanford C246: Mining Massive Datasets



 How to organize the Web?
 First try: Human curated

Web directories

▪ Yahoo, DMOZ, LookSmart

 Second try: Web Search

▪ Information Retrieval investigates:
Find relevant docs in a small 
and trusted set

▪ Newspaper articles, Patents, etc.

▪ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

▪ No single right answer

▪ Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers
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 All web pages are not equally “important”

thispersondoesnotexist.com vs. www.stanford.edu 

 There is a large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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http://www.stanford.edu/


 We will cover the following Link Analysis 
approaches for computing importance 
of nodes in a graph:

▪ PageRank

▪ Topic-Specific (Personalized) PageRank

▪ Web Spam Detection Algorithms
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 Idea: Links as votes

▪ Page is more important if it has more links

▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has millions in-links

▪ thispersondoesnotexist.com has a few thousands in-link

 Are all in-links equal?

▪ Links from important pages count more

▪ Recursive question! 
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 Web pages are important if people visit them 
a lot.

 But we can’t watch everybody using the Web.
 A good surrogate for visiting pages is to 

assume people follow links randomly.
 Leads to random surfer model:

▪ Start at a random page and follow random out-
links repeatedly, from whatever page you are at.

▪ PageRank = limiting probability of being at a page.
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 Solve the recursive equation: “importance of a 
page = its share of the importance of each of its 
predecessor pages”

▪ Equivalent to the random-surfer definition of 
PageRank

 Technically, importance = the principal 
eigenvector of the transition matrix of the Web

▪ A few fix-ups needed
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 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for page j
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The web in 1839

“Flow” equations:

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊

𝒓𝒋 are the solutions to the “flow” equation



 3 equations, 3 unknowns, 
no constants
▪ No unique solution

▪ All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚  + 𝒓𝒂 +  𝒓𝒎  =  𝟏

▪ Solution: 𝒓𝒚  =
𝟐

𝟓
, 𝒓𝒂  =

𝟐

𝟓
, 𝒓𝒎  =

𝟏

𝟓
 Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

 We need a new formulation!
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ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2

Flow equations:



 Stochastic adjacency matrix 𝑴
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑𝑖

    else   𝑀𝑗𝑖 = 0
▪ 𝑴 is a column stochastic matrix

▪ Columns sum to 1

 Rank vector 𝒓: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖

▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written 

   𝒓 = 𝑴 ⋅ 𝒓
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 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅  𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j
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r = M∙r

ry       ½    ½    0     ry

 ra   =  ½     0    1     ra

 rm       0    ½    0    rm
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y

a m

ry ra rm

ry ½ ½ 0

ra ½ 0 1

rm 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2
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𝑨𝒙 = 𝝀𝒙



 Given a web graph with N nodes, where the 
nodes are pages and edges are hyperlinks

 Power iteration: a simple iterative scheme

▪ Suppose there are N web pages

▪ Initialize: r(0) = [1/N,….,1/N]T

▪ Iterate: r(t+1) = M ∙ r(t)

▪ Stop when |r(t+1) – r(t)|1 < 
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di …. out-degree of node i

|x|1 = 1≤i≤N|xi| is the L1 norm 

So that r is a distribution (sums to 1)

About 50 iterations is sufficient to estimate the limiting solution. 



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
 ry  1/3 1/3 5/12 9/24  6/15

 ra = 1/3 3/6 1/3 11/24 … 6/15

 rm  1/3 1/6 3/12 1/6  3/15
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a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′
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 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages
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 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

  𝒑 𝒕 + 𝟏 =  𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 =  𝑴 ⋅ 𝒑(𝒕)  =  𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 =  𝑴 ⋅ 𝒓

▪ So, 𝒓 is a stationary distribution for 
the random walk

)(M)1( tptp =+

j

i1 i2 i3
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 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what is 
the initial probability distribution at time t = 0
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 Which node has highest PageRank? Second highest?
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 Node 1 has the highest PR, followed by Node 3
 Degree ≠ PageRank
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 Add edge 3 -> 2, 1 -> 3. Now, which node has highest 
PageRank? Second highest?
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 Node 3 has the highest PR, followed by 2.
 Small changes to graph can change PR!
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 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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 Example:
  ra  1 0 1 0 

  rb  0 1 0 1
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 Example:
  ra  1 0 0 0 

  rb  0 1 0 0
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Two problems:
 (1) Dead ends: Some pages 

have no out-links

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps: 
(all out-links are within the group)

▪ Random walk gets “stuck” in a trap

▪ And eventually spider traps absorb all importance
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Dead end



 Power Iteration:

▪ Set 𝑟𝑗 = 1/𝑁

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
 ry  1/3 2/6 3/12 5/24  0

 ra = 1/3 1/6 2/12 3/24 … 0

 rm  1/3 3/6 7/12 16/24  1
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry  = ry /2 + ra /2

ra  = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.



 The Google solution for spider traps: At each 
time step, the random surfer has two options

▪ With prob. , follow a link at random

▪ With prob. 1-, jump to some random page

▪    is typically in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps
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 Power Iteration:

▪ Set 𝑟𝑗 = 1/𝑁

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
 ry  1/3 2/6 3/12 5/24  0

 ra = 1/3 1/6 2/12 3/24 … 0

 rm  1/3 1/6 1/12 2/24  0
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2

rm = ra /2

Here the PageRank score “leaks” out since the matrix is not stochastic.



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

▪ Adjust matrix accordingly
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Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
 Spider-traps are not a problem, but with traps 

PageRank scores are not what we want

▪ Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a problem

▪ The matrix is not column stochastic so our initial 
assumptions are not met

▪ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability ,  follow a link at random

▪ With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 = ෍

𝑖→𝑗

𝛽
𝑟𝑖

𝑑𝑖
+ (1 − 𝛽)

1

𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 = ෍

𝑖→𝑗

𝛽
𝑟𝑖

𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁

 We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓 
And the Power method still works!

 What is  ?

▪ In practice  =0.8,0.9 (jump every 5 steps on avg.)
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[1/N]NxN…N by N matrix

where all entries are 1/N



y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

  5/33

21/33

. . .
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y

a
m

13/15

7/15

1/2 1/2   0

     1/2   0    0

      0   1/2   1

1/3 1/3 1/3

   1/3 1/3 1/3

   1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A





 Key step is matrix-vector multiplication
▪ rnew = A ∙ rold

 Easy if we have enough main memory to 
hold A, rold, rnew

 Say N = 1 billion pages
▪ We need 4 bytes for 

each entry (say)

▪ 2 billion entries for 
vectors, approx 8GB

▪ Matrix A has N2 entries
▪ 1018 is a large number!
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½   ½   0

 ½   0   0

0    ½   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

     7/15  1/15   1/15

     1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =



𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷 𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

 𝑟𝑗  = σi=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

𝑟𝑗 = σ𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖

  = σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
σi=1

𝑁 𝑟𝑖

  = σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
            since σ𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷 𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵
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[x]N … a vector  of length N with all entries x
Note: Here we assume M 

has no dead-ends



 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

▪ where [(1-)/N]N is a vector with all N entries (1-)/N

 M is a sparse matrix! (with no dead-ends)

▪ 10 links per node, approx 10𝑁 entries
 So in each iteration, we need to:

▪ Compute rnew =  M ∙ rold

▪ Add a constant value (1-)/N to each entry in rnew

▪ Note if M contains dead-ends then σ𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1
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 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (can have spider traps and dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗
𝑜𝑙𝑑  =

1

𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 < 𝜀

▪ ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋 𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
 

           𝒓′𝒋
𝒏𝒆𝒘 = 𝟎  if in-degree of 𝒋 is 0

▪ Now re-insert the leaked PageRank:

    ∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′

𝒋
𝒏𝒆𝒘

+
𝟏−𝑺

𝑵

▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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 Encode sparse matrix using only nonzero 
entries

▪ Space proportional roughly to number of links

▪ Say 10N, or 4*10*1 billion = 40GB

▪ Still won’t fit in memory, but will fit on disk
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 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 1 step of power-iteration is:
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0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1
2
3
4
5
6

0
1
2
3
4
5
6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

  Read into memory: i, di, dest1, …, destdi, rold(i)

  For j = 1…di

      rnew(destj) +=  rold(i) / di

Assuming no 

dead ends



 Assume enough RAM to fit rnew into memory

▪ Store rold and matrix M on disk

 In each iteration, we have to:

▪ Read rold and M

▪ Write rnew back to disk

▪ Cost per iteration of Power method:
= 2|𝒓| +  |𝑴|

 Question:

▪ What if we could not even fit rnew in memory?
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▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block
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1 2 0, 5

2 2 3, 4
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0
1

2
3

4
5

0
1
2
3
4
5

rnew rold

M



 Similar to nested-loop join in databases

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

 Total cost:

▪ k scans of M and rold

▪ Cost per iteration of Power method:
𝑘(|𝑴|  +  |𝒓|)  +  |𝒓|  =  𝒌|𝑴|  +  (𝒌 + 𝟏)|𝒓|

 Can we do better?

▪ Hint: M is much bigger than r (approx 10-20x), so 
we must avoid reading it k times per iteration
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0 4 0, 1

1 2 0

src degree destination

0
1

2
3

4
5

0
1
2
3
4
5

rnew

rold

0 4 5

1 2 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only 

destination nodes in the corresponding block of rnew



 Break M into stripes

▪ Each stripe contains only destination nodes 
in the corresponding block of rnew

 Some additional overhead per stripe

▪ But it is usually worth it

 Cost per iteration of Power method:
=|𝑴|(𝟏 + ε)  + (𝒌 + 𝟏)|𝒓|
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where 𝜀 is a small number.



 Measures generic popularity of a page

▪ Biased against topic-specific authorities

▪ Solution: Topic-Specific PageRank (next)

 Uses a single measure of importance

▪ Other models of importance

▪ Solution: Hubs-and-Authorities

 Susceptible to Link spam

▪ Artificial link topographies created in order to 
boost page rank

▪ Solution: TrustRank
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 Power iteration: 
A method for finding dominant eigenvector (the 
vector corresponding to the largest eigenvalue)

▪ 𝒓(𝟏) = 𝑴 ⋅ 𝒓(𝟎)

▪ 𝒓(𝟐) = 𝑴 ⋅ 𝒓 𝟏 = 𝑴 𝑴𝒓 𝟎 = 𝑴𝟐 ⋅ 𝒓 𝟎

▪ 𝒓(𝟑) = 𝑴 ⋅ 𝒓 𝟐 = 𝑴 𝑴𝟐𝒓 𝟎 = 𝑴𝟑 ⋅ 𝒓 𝟎

 Claim: 

Sequence 𝑴 ⋅ 𝒓 𝟎 , 𝑴𝟐 ⋅ 𝒓 𝟎 , … 𝑴𝒌 ⋅ 𝒓 𝟎 , … 
approaches the dominant eigenvector of 𝑴
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 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 , 𝑴𝟐 ⋅ 𝒓 𝟎 , … 𝑴𝒌 ⋅ 𝒓 𝟎 , … 
approaches the dominant eigenvector of 𝑴

 Proof:
▪ Assume M has n linearly independent eigenvectors, 

𝑥1, 𝑥2, … , 𝑥𝑛 with corresponding eigenvalues 
𝜆1, 𝜆2, … , 𝜆𝑛, where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛

▪ Vectors 𝑥1, 𝑥2, … , 𝑥𝑛 form a basis and thus we can write: 
𝑟(0) = 𝑐1 𝑥1 + 𝑐2 𝑥2 + ⋯ + 𝑐𝑛 𝑥𝑛

▪ 𝑴𝒓(𝟎) = 𝑴 𝒄𝟏 𝒙𝟏 + 𝒄𝟐 𝒙𝟐 + ⋯ + 𝒄𝒏 𝒙𝒏

                = 𝑐1(𝑀𝑥1) + 𝑐2(𝑀𝑥2) + ⋯ + 𝑐𝑛(𝑀𝑥𝑛)
                = 𝑐1(𝜆1𝑥1) + 𝑐2(𝜆2𝑥2) + ⋯ + 𝑐𝑛(𝜆𝑛𝑥𝑛)
▪ Repeated multiplication on both sides produces
    𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯ + 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)
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 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 , 𝑴𝟐 ⋅ 𝒓 𝟎 , … 𝑴𝒌 ⋅ 𝒓 𝟎 , … 
approaches the dominant eigenvector of 𝑴

 Proof (continued):
▪ Repeated multiplication on both sides produces
  𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯ + 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)

𝑀𝑘𝑟(0) = 𝜆1
𝑘 𝑐1𝑥1 + 𝑐2

𝜆2

𝜆1

𝑘

𝑥2 + ⋯ + 𝑐𝑛
𝜆𝑛

𝜆1

𝑘

𝑥𝑛

▪ Since 𝜆1 > 𝜆2  then fractions 
𝜆2

𝜆1

,
𝜆3

𝜆1

… < 1 

and so 
𝜆𝑖

𝜆1

𝑘

= 0 as 𝑘 → ∞  (for all 𝑖 = 2 … 𝑛).

▪ Thus: 𝑴𝒌𝒓(𝟎) ≈ 𝒄𝟏 𝝀𝟏
𝒌𝒙𝟏

▪ Note if 𝑐1 = 0 then the method won’t converge
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 Given an undirected graph with N 
nodes, where the nodes are pages and 
edges are hyperlinks

 Claim [Existence]: For node v,
  rv = dv/2m is a solution.
 Proof:

▪ Iteration step: r(t+1) = M ∙ r(t)

▪ Substitute ri = di/2m:

 Done! Uniqueness: exercise! m = #edges
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 Classic work: Markov chains, citation analysis
 RankDex patent [Robin Li, '96]

▪ Key idea: use backlinks (led to Baidu!)

 HITS Algorithm [Kleinberg, SODA '98]

▪ Key idea: iterative scoring!

 PageRank work [Page et al, '98]
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