
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

Charilaos Kanatsoulis, Stanford University

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to
modify them to fit your own needs. If you make use of a significant portion of these slides
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

Jure Leskovec, Stanford C246: Mining Massive Datasets

Jure Leskovec, Stanford C246: Mining Massive Datasets

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Jure Leskovec, Stanford C246: Mining Massive Datasets

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]

Jure Leskovec, Stanford C246: Mining Massive Datasets

Citation networks and Maps of science
[Börner et al., 2012]

domain2

domain1

domain3

router

Internet
Jure Leskovec, Stanford C246: Mining Massive Datasets

Jure Leskovec, Stanford C246: Mining Massive Datasets

Seven Bridges of Königsberg
[Euler, 1735]

Return to the starting point by traveling each
link of the graph once and only once.

 Web as a directed graph:

▪ Nodes: Webpages

▪ Edges: Hyperlinks

Jure Leskovec, Stanford C246: Mining Massive Datasets

I teach a
class on

Networks. CS224W:
Classes are

in the
Gates

building Computer
Science

Department
at Stanford

Stanford
University

 Web as a directed graph:

▪ Nodes: Webpages

▪ Edges: Hyperlinks

Jure Leskovec, Stanford C246: Mining Massive Datasets

I teach a
class on

Networks. CS224W:
Classes are

in the
Gates

building Computer
Science

Department
at Stanford

Stanford
University

Jure Leskovec, Stanford C246: Mining Massive Datasets

 How to organize the Web?
 First try: Human curated

Web directories

▪ Yahoo, DMOZ, LookSmart

 Second try: Web Search

▪ Information Retrieval investigates:
Find relevant docs in a small
and trusted set

▪ Newspaper articles, Patents, etc.

▪ But: Web is huge, full of untrusted documents,
random things, web spam, etc.

Jure Leskovec, Stanford C246: Mining Massive Datasets

2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query
“newspaper”?

▪ No single right answer

▪ Trick: Pages that actually know about newspapers
might all be pointing to many newspapers

Jure Leskovec, Stanford C246: Mining Massive Datasets

 All web pages are not equally “important”

thispersondoesnotexist.com vs. www.stanford.edu

 There is a large diversity
in the web-graph
node connectivity.
Let’s rank the pages by
the link structure!

Jure Leskovec, Stanford C246: Mining Massive Datasets

https://thispersondoesnotexist.com/
http://www.stanford.edu/

 We will cover the following Link Analysis
approaches for computing importance
of nodes in a graph:

▪ PageRank

▪ Topic-Specific (Personalized) PageRank

▪ Web Spam Detection Algorithms

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Idea: Links as votes

▪ Page is more important if it has more links

▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has millions in-links

▪ thispersondoesnotexist.com has a few thousands in-link

 Are all in-links equal?

▪ Links from important pages count more

▪ Recursive question!

Jure Leskovec, Stanford C246: Mining Massive Datasets

http://www.stanford.edu/
https://thispersondoesnotexist.com/

 Web pages are important if people visit them
a lot.

 But we can’t watch everybody using the Web.
 A good surrogate for visiting pages is to

assume people follow links randomly.
 Leads to random surfer model:

▪ Start at a random page and follow random out-
links repeatedly, from whatever page you are at.

▪ PageRank = limiting probability of being at a page.

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Solve the recursive equation: “importance of a
page = its share of the importance of each of its
predecessor pages”

▪ Equivalent to the random-surfer definition of
PageRank

 Technically, importance = the principal
eigenvector of the transition matrix of the Web

▪ A few fix-ups needed

Jure Leskovec, Stanford C246: Mining Massive Datasets

B

38.4
C

34.3

E

8.1
F

3.9

D

3.9

A

3.3

1.6
1.6 1.6 1.6 1.6

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Each link’s vote is proportional to the
importance of its source page

 If page j with importance rj has n out-links,
each link gets rj / n votes

 Page j’s own importance is the sum of the
votes on its in-links

Jure Leskovec, Stanford C246: Mining Massive Datasets

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4

 A “vote” from an important
page is worth more

 A page is important if it is
pointed to by other important
pages

 Define a “rank” rj for page j

Jure Leskovec, Stanford C246: Mining Massive Datasets


→

=
ji

i
j

r
r

id

y

ma
ra/2

ry/2
ra/2

rm

ry/2

The web in 1839

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊

𝒓𝒋 are the solutions to the “flow” equation

 3 equations, 3 unknowns,
no constants
▪ No unique solution

▪ All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

▪ Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓
 Gaussian elimination method works for

small examples, but we need a better
method for large web-size graphs

 We need a new formulation!
Jure Leskovec, Stanford C246: Mining Massive Datasets

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:

 Stochastic adjacency matrix 𝑴
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then 𝑀𝑗𝑖 =
1

𝑑𝑖

 else 𝑀𝑗𝑖 = 0
▪ 𝑴 is a column stochastic matrix

▪ Columns sum to 1

 Rank vector 𝒓: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖

▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written

 𝒓 = 𝑴 ⋅ 𝒓

Jure Leskovec, Stanford C246: Mining Massive Datasets


→

=
ji

i
j

r
r

id

 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j

Jure Leskovec, Stanford C246: Mining Massive Datasets

j

i

M r r

=
rj

1/3


→

=
ji

i
j

r
r

id

ri

.

. =

r = M∙r

ry ½ ½ 0 ry

 ra = ½ 0 1 ra

 rm 0 ½ 0 rm

Jure Leskovec, Stanford C246: Mining Massive Datasets

y

a m

ry ra rm

ry ½ ½ 0

ra ½ 0 1

rm 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Jure Leskovec, Stanford C246: Mining Massive Datasets

NOTE: x is an

eigenvector with
the corresponding

eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙

 Given a web graph with N nodes, where the
nodes are pages and edges are hyperlinks

 Power iteration: a simple iterative scheme

▪ Suppose there are N web pages

▪ Initialize: r(0) = [1/N,….,1/N]T

▪ Iterate: r(t+1) = M ∙ r(t)

▪ Stop when |r(t+1) – r(t)|1 < 

Jure Leskovec, Stanford C246: Mining Massive Datasets


→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

di …. out-degree of node i

|x|1 = 1≤i≤N|xi| is the L1 norm

So that r is a distribution (sums to 1)

About 50 iterations is sufficient to estimate the limiting solution.

 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
 ry 1/3 1/3 5/12 9/24 6/15

 ra = 1/3 3/6 1/3 11/24 … 6/15

 rm 1/3 1/6 3/12 1/6 3/15

Jure Leskovec, Stanford C246: Mining Massive Datasets

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
 ry 1/3 1/3 5/12 9/24 6/15

 ra = 1/3 3/6 1/3 11/24 … 6/15

 rm 1/3 1/6 3/12 1/6 3/15

Jure Leskovec, Stanford C246: Mining Massive Datasets

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages

Jure Leskovec, Stanford C246: Mining Massive Datasets


→

=
ji

i
j

r
r

(i)dout

j

i1 i2 i3

 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

 𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies 𝒓 = 𝑴 ⋅ 𝒓

▪ So, 𝒓 is a stationary distribution for
the random walk

)(M)1(tptp =+

j

i1 i2 i3

Jure Leskovec, Stanford C246: Mining Massive Datasets

 A central result from the theory of random
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what is
the initial probability distribution at time t = 0

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Which node has highest PageRank? Second highest?

Jure Leskovec, Stanford C246: Mining Massive Datasets

6

2

1

3

4

5

 Node 1 has the highest PR, followed by Node 3
 Degree ≠ PageRank

Jure Leskovec, Stanford C246: Mining Massive Datasets

6

2

1

4

5

3

 Add edge 3 -> 2, 1 -> 3. Now, which node has highest
PageRank? Second highest?

Jure Leskovec, Stanford C246: Mining Massive Datasets

6

2

1

3

4

5

 Node 3 has the highest PR, followed by 2.
 Small changes to graph can change PR!

Jure Leskovec, Stanford C246: Mining Massive Datasets

6

2

1

3

4

5

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?


→

+
=

ji

t

it

j

r
r

i

)(
)1(

d Mrr =or

 equivalently

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Example:
 ra 1 0 1 0

 rb 0 1 0 1

Jure Leskovec, Stanford C246: Mining Massive Datasets

=

ba

Iteration 0, 1, 2, …


→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

 Example:
 ra 1 0 0 0

 rb 0 1 0 0

Jure Leskovec, Stanford C246: Mining Massive Datasets

=

ba

Iteration 0, 1, 2, …


→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

Two problems:
 (1) Dead ends: Some pages

have no out-links

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

▪ Random walk gets “stuck” in a trap

▪ And eventually spider traps absorb all importance

Jure Leskovec, Stanford C246: Mining Massive Datasets

Dead end

 Power Iteration:

▪ Set 𝑟𝑗 = 1/𝑁

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
 ry 1/3 2/6 3/12 5/24 0

 ra = 1/3 1/6 2/12 3/24 … 0

 rm 1/3 3/6 7/12 16/24 1

Jure Leskovec, Stanford C246: Mining Massive Datasets

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.

 The Google solution for spider traps: At each
time step, the random surfer has two options

▪ With prob. , follow a link at random

▪ With prob. 1-, jump to some random page

▪  is typically in the range 0.8 to 0.9

 Surfer will teleport out of spider trap
within a few time steps

Jure Leskovec, Stanford C246: Mining Massive Datasets

y

a m

y

a m

 Power Iteration:

▪ Set 𝑟𝑗 = 1/𝑁

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
 ry 1/3 2/6 3/12 5/24 0

 ra = 1/3 1/6 2/12 3/24 … 0

 rm 1/3 1/6 1/12 2/24 0

Jure Leskovec, Stanford C246: Mining Massive Datasets

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank score “leaks” out since the matrix is not stochastic.

 Teleports: Follow random teleport links with
probability 1.0 from dead-ends

▪ Adjust matrix accordingly

Jure Leskovec, Stanford C246: Mining Massive Datasets

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?
 Spider-traps are not a problem, but with traps

PageRank scores are not what we want

▪ Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps

 Dead-ends are a problem

▪ The matrix is not column stochastic so our initial
assumptions are not met

▪ Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability , follow a link at random

▪ With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 = ෍

𝑖→𝑗

𝛽
𝑟𝑖

𝑑𝑖
+ (1 − 𝛽)

1

𝑁

Jure Leskovec, Stanford C246: Mining Massive Datasets

di … out-degree
of node i

This formulation assumes that 𝑴 has no dead ends. We can either

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random

teleport links with probability 1.0 from dead-ends.

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 = ෍

𝑖→𝑗

𝛽
𝑟𝑖

𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁

 We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓
And the Power method still works!

 What is  ?

▪ In practice  =0.8,0.9 (jump every 5 steps on avg.)
Jure Leskovec, Stanford C246: Mining Massive Datasets

[1/N]NxN…N by N matrix

where all entries are 1/N

y

a =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

 5/33

21/33

. . .

Jure Leskovec, Stanford C246: Mining Massive Datasets

y

a
m

13/15

7/15

1/2 1/2 0

 1/2 0 0

 0 1/2 1

1/3 1/3 1/3

 1/3 1/3 1/3

 1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

M [1/N]NxN

A

 Key step is matrix-vector multiplication
▪ rnew = A ∙ rold

 Easy if we have enough main memory to
hold A, rold, rnew

 Say N = 1 billion pages
▪ We need 4 bytes for

each entry (say)

▪ 2 billion entries for
vectors, approx 8GB

▪ Matrix A has N2 entries
▪ 1018 is a large number!

Jure Leskovec, Stanford C246: Mining Massive Datasets

½ ½ 0

 ½ 0 0

0 ½ 1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15 7/15 1/15

 7/15 1/15 1/15

 1/15 7/15 13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =

𝒓 = 𝑨 ⋅ 𝒓, where 𝑨𝒋𝒊 = 𝜷 𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

 𝑟𝑗 = σi=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

𝑟𝑗 = σ𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖

 = σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
σi=1

𝑁 𝑟𝑖

 = σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
 since σ𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷 𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵

Jure Leskovec, Stanford C246: Mining Massive Datasets

[x]N … a vector of length N with all entries x
Note: Here we assume M

has no dead-ends

 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

▪ where [(1-)/N]N is a vector with all N entries (1-)/N

 M is a sparse matrix! (with no dead-ends)

▪ 10 links per node, approx 10𝑁 entries
 So in each iteration, we need to:

▪ Compute rnew =  M ∙ rold

▪ Add a constant value (1-)/N to each entry in rnew

▪ Note if M contains dead-ends then σ𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and

we also have to renormalize rnew so that it sums to 1
Jure Leskovec, Stanford C246: Mining Massive Datasets

 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (can have spider traps and dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 < 𝜀

▪ ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋 𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

 𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

▪ Now re-insert the leaked PageRank:

 ∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′

𝒋
𝒏𝒆𝒘

+
𝟏−𝑺

𝑵

▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
Jure Leskovec, Stanford C246: Mining Massive Datasets

 Encode sparse matrix using only nonzero
entries

▪ Space proportional roughly to number of links

▪ Say 10N, or 4*10*1 billion = 40GB

▪ Still won’t fit in memory, but will fit on disk

Jure Leskovec, Stanford C246: Mining Massive Datasets

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source

node degree destination nodes

 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 1 step of power-iteration is:

Jure Leskovec, Stanford C246: Mining Massive Datasets

0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1
2
3
4
5
6

0
1
2
3
4
5
6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

 Read into memory: i, di, dest1, …, destdi, rold(i)

 For j = 1…di

 rnew(destj) +=  rold(i) / di

Assuming no

dead ends

 Assume enough RAM to fit rnew into memory

▪ Store rold and matrix M on disk

 In each iteration, we have to:

▪ Read rold and M

▪ Write rnew back to disk

▪ Cost per iteration of Power method:
= 2|𝒓| + |𝑴|

 Question:

▪ What if we could not even fit rnew in memory?

Jure Leskovec, Stanford C246: Mining Massive Datasets

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

Jure Leskovec, Stanford C246: Mining Massive Datasets

0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination
0
1

2
3

4
5

0
1
2
3
4
5

rnew rold

M

 Similar to nested-loop join in databases

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

 Total cost:

▪ k scans of M and rold

▪ Cost per iteration of Power method:
𝑘(|𝑴| + |𝒓|) + |𝒓| = 𝒌|𝑴| + (𝒌 + 𝟏)|𝒓|

 Can we do better?

▪ Hint: M is much bigger than r (approx 10-20x), so
we must avoid reading it k times per iteration

Jure Leskovec, Stanford C246: Mining Massive Datasets

Jure Leskovec, Stanford C246: Mining Massive Datasets

0 4 0, 1

1 2 0

src degree destination

0
1

2
3

4
5

0
1
2
3
4
5

rnew

rold

0 4 5

1 2 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only

destination nodes in the corresponding block of rnew

 Break M into stripes

▪ Each stripe contains only destination nodes
in the corresponding block of rnew

 Some additional overhead per stripe

▪ But it is usually worth it

 Cost per iteration of Power method:
=|𝑴|(𝟏 + ε) + (𝒌 + 𝟏)|𝒓|

Jure Leskovec, Stanford C246: Mining Massive Datasets

where 𝜀 is a small number.

 Measures generic popularity of a page

▪ Biased against topic-specific authorities

▪ Solution: Topic-Specific PageRank (next)

 Uses a single measure of importance

▪ Other models of importance

▪ Solution: Hubs-and-Authorities

 Susceptible to Link spam

▪ Artificial link topographies created in order to
boost page rank

▪ Solution: TrustRank

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Power iteration:
A method for finding dominant eigenvector (the
vector corresponding to the largest eigenvalue)

▪ 𝒓(𝟏) = 𝑴 ⋅ 𝒓(𝟎)

▪ 𝒓(𝟐) = 𝑴 ⋅ 𝒓 𝟏 = 𝑴 𝑴𝒓 𝟎 = 𝑴𝟐 ⋅ 𝒓 𝟎

▪ 𝒓(𝟑) = 𝑴 ⋅ 𝒓 𝟐 = 𝑴 𝑴𝟐𝒓 𝟎 = 𝑴𝟑 ⋅ 𝒓 𝟎

 Claim:

Sequence 𝑴 ⋅ 𝒓 𝟎 , 𝑴𝟐 ⋅ 𝒓 𝟎 , … 𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 , 𝑴𝟐 ⋅ 𝒓 𝟎 , … 𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

 Proof:
▪ Assume M has n linearly independent eigenvectors,

𝑥1, 𝑥2, … , 𝑥𝑛 with corresponding eigenvalues
𝜆1, 𝜆2, … , 𝜆𝑛, where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛

▪ Vectors 𝑥1, 𝑥2, … , 𝑥𝑛 form a basis and thus we can write:
𝑟(0) = 𝑐1 𝑥1 + 𝑐2 𝑥2 + ⋯ + 𝑐𝑛 𝑥𝑛

▪ 𝑴𝒓(𝟎) = 𝑴 𝒄𝟏 𝒙𝟏 + 𝒄𝟐 𝒙𝟐 + ⋯ + 𝒄𝒏 𝒙𝒏

 = 𝑐1(𝑀𝑥1) + 𝑐2(𝑀𝑥2) + ⋯ + 𝑐𝑛(𝑀𝑥𝑛)
 = 𝑐1(𝜆1𝑥1) + 𝑐2(𝜆2𝑥2) + ⋯ + 𝑐𝑛(𝜆𝑛𝑥𝑛)
▪ Repeated multiplication on both sides produces
 𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯ + 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 , 𝑴𝟐 ⋅ 𝒓 𝟎 , … 𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

 Proof (continued):
▪ Repeated multiplication on both sides produces
 𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯ + 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)

𝑀𝑘𝑟(0) = 𝜆1
𝑘 𝑐1𝑥1 + 𝑐2

𝜆2

𝜆1

𝑘

𝑥2 + ⋯ + 𝑐𝑛
𝜆𝑛

𝜆1

𝑘

𝑥𝑛

▪ Since 𝜆1 > 𝜆2 then fractions
𝜆2

𝜆1

,
𝜆3

𝜆1

… < 1

and so
𝜆𝑖

𝜆1

𝑘

= 0 as 𝑘 → ∞ (for all 𝑖 = 2 … 𝑛).

▪ Thus: 𝑴𝒌𝒓(𝟎) ≈ 𝒄𝟏 𝝀𝟏
𝒌𝒙𝟏

▪ Note if 𝑐1 = 0 then the method won’t converge

Jure Leskovec, Stanford C246: Mining Massive Datasets

 Given an undirected graph with N
nodes, where the nodes are pages and
edges are hyperlinks

 Claim [Existence]: For node v,
 rv = dv/2m is a solution.
 Proof:

▪ Iteration step: r(t+1) = M ∙ r(t)

▪ Substitute ri = di/2m:

 Done! Uniqueness: exercise! m = #edges

Jure Leskovec, Stanford C246: Mining Massive Datasets

v

y zx

 Classic work: Markov chains, citation analysis
 RankDex patent [Robin Li, '96]

▪ Key idea: use backlinks (led to Baidu!)

 HITS Algorithm [Kleinberg, SODA '98]

▪ Key idea: iterative scoring!

 PageRank work [Page et al, '98]

Jure Leskovec, Stanford C246: Mining Massive Datasets

	Slide 1: Analysis of Large Graphs: Link Analysis, PageRank
	Slide 2: New Topic: Graph Data!
	Slide 3: Graph Data: Social Networks
	Slide 4: Graph Data: Media Networks
	Slide 5: Graph Data: Information Nets
	Slide 6: Graph Data: Communication Networks
	Slide 7: Graph Data: Technological Networks
	Slide 8: Web as a Graph
	Slide 9: Web as a Graph
	Slide 10: Web as a Directed Graph
	Slide 11: Broad Question
	Slide 12: Web Search: 2 Challenges
	Slide 13: Ranking Nodes on the Graph
	Slide 14: Link Analysis Algorithms
	Slide 15: PageRank: The “Flow” Formulation
	Slide 16: Links as Votes
	Slide 17: Intuition – (1)
	Slide 18: Intuition – (2)
	Slide 19: Example: PageRank Scores
	Slide 20: Simple Recursive Formulation
	Slide 21: PageRank: The “Flow” Model
	Slide 22: Solving the Flow Equations
	Slide 23: PageRank: Matrix Formulation
	Slide 24: Example
	Slide 25: Example: Flow Equations & M
	Slide 26: Eigenvector Formulation
	Slide 27: Power Iteration Method
	Slide 28: PageRank: How to solve?
	Slide 29: PageRank: How to solve?
	Slide 30: Random Walk Interpretation
	Slide 31: The Stationary Distribution
	Slide 32: Existence and Uniqueness
	Slide 33: PageRank: test your intuition 1
	Slide 34: PageRank: test your intuition 1
	Slide 35: PageRank: test your intuition 2
	Slide 36: PageRank: test your intuition 2
	Slide 37: PageRank: The Google Formulation
	Slide 38: PageRank: Three Questions
	Slide 39: Does this converge?
	Slide 40: Does it converge to what we want?
	Slide 41: PageRank: Problems
	Slide 42: Problem: Spider Traps
	Slide 43: Solution: Teleports!
	Slide 44: Problem: Dead Ends
	Slide 45: Solution: Always Teleport!
	Slide 46: Why Teleports Solve the Problem?
	Slide 47: Solution: Random Teleports
	Slide 48: The Google Matrix
	Slide 49: Random Teleports ( = 0.8)
	Slide 50: How do we actually compute the PageRank?
	Slide 51: Computing PageRank
	Slide 52: Rearranging the Equation
	Slide 53: Sparse Matrix Formulation
	Slide 54: PageRank: The Complete Algorithm
	Slide 55: Sparse Matrix Encoding
	Slide 56: Basic Algorithm: Update Step
	Slide 57: Analysis
	Slide 58: Block-based Update Algorithm
	Slide 59: Analysis of Block Update
	Slide 60: Block-Stripe Update Algorithm
	Slide 61: Block-Stripe Analysis
	Slide 62: Some Problems with PageRank
	Slide 63: Extras
	Slide 64: Why Power Iteration works? (1)
	Slide 65: Why Power Iteration works? (2)
	Slide 66: Why Power Iteration works? (3)
	Slide 67: PageRank for Undirected Graphs
	Slide 68: Historical note on Link Analysis

